分析 (Ⅰ)推导出∠EBD是BE与平面ABCD所成角,从而tan∠EBD=$\frac{\sqrt{2}}{2}$,再求出BD⊥CD,AB⊥BD,从而PD⊥AB,进而AB⊥平面PBD,由此能证明平面PAB⊥平面PBD.
(Ⅱ)以D为原点,分别以DB,DC,DP所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出面PAB与面EFB所成二面角的余弦值.
解答
证明:(Ⅰ)∵PD⊥底面ABCD,∴∠EBD是BE与平面ABCD所成角,
∴tan∠EBD=$\frac{\sqrt{2}}{2}$,
∵E是PD的中点,PD=2,∴DE=1,BD=$\sqrt{2}$,
在△BDC中,BD=DC=$\sqrt{2}$,BC=2,∴BD2+CD2=BC2,
∴∠BDC=90°,即BD⊥CD,
∵ABCD是平行四边形,∴AB∥CD,∴AB⊥BD,
∵PD⊥底面ABCD,∴PD⊥AB,
∵PD∩BD=D,∴AB⊥平面PBD,
∵AB?面PAB,∴平面PAB⊥平面PBD.
解:(Ⅱ)以D为原点,分别以DB,DC,DP所在直线为x轴,y轴,z轴,建立空间直角坐标系,
B($\sqrt{2}$,0,0),A($\sqrt{2},-\sqrt{2}$,0),C(0,$\sqrt{2}$,0),P(0,0,2),E(0,0,1),F(0,$\frac{\sqrt{2}}{2}$,1),
设平面PAB的法向量$\overrightarrow{m}$=(x,y,z),
∵$\overrightarrow{PA}=(\sqrt{2},-\sqrt{2},-2)$,$\overrightarrow{PB}=(\sqrt{2},0,-2)$,
∴$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PA}=\sqrt{2}x-\sqrt{2}y-2z=0}\\{\overrightarrow{m}•\overrightarrow{PB}=\sqrt{2}x-2z=0}\end{array}\right.$,取z=1,得$\overrightarrow{m}=(\sqrt{2},0,1)$,
设$\overrightarrow{n}$=(a,b,c)是平面BEF的法向量,
∵$\overrightarrow{BE}=(-\sqrt{2},0,1)$,$\overrightarrow{BF}=(-\sqrt{2},\frac{\sqrt{2}}{2},1)$,
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=-\sqrt{2}a+c=0}\\{\overrightarrow{n}•\overrightarrow{BF}=-\sqrt{2}a+\frac{\sqrt{2}}{2}b+c=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,$\sqrt{2}$),
设面PAB与面EFB所成二面角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2\sqrt{2}}{\sqrt{3}•\sqrt{3}}$=$\frac{2\sqrt{2}}{3}$.
∴面PAB与面EFB所成二面角的余弦值为$\frac{2\sqrt{2}}{3}$.
点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3,3 | B. | 3,-1 | C. | -1,3 | D. | -1,-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 36π | B. | 48π | C. | 56π | D. | 64π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 上机天数x | 10 | 20 | 30 | 40 | 50 |
| 产品个数y/天 | 62 | 75 | 81 | 89 |
| A. | 67 | B. | 68 | C. | 68.3 | D. | 71 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 常喝 | 不常喝 | 合计 | |
| 肥胖 | 6 | 2 | |
| 不肥胖 | 18 | ||
| 合计 | 30 |
| P(K2≥k) | 0.05 | 0.005 |
| k | 3.841 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com