精英家教网 > 高中数学 > 题目详情
9.某饮料店某5天的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的数据如下表:
x-2-1012
y54221
甲、乙、丙、丁四位同学对上述数据进行了研究,分别得到了x与y之间的四个线性回归方程:①$\widehaty$=-x+3,②$\widehaty$=-x+2.8,③$\widehaty$=-x+2.6,④$\hat y$=x+2.8,其中正确的方程是(  )
A.B.C.D.

分析 由数据求得样本中心点($\overline{x}$,$\overline{y}$)可得,利用样本中心点满足线性回归方程,即可得出结论.

解答 解:由$\overline{x}$=$\frac{-2+(-1)+0+1+2}{2}$=0,
$\overline{y}$=$\frac{5+4+2+2+1}{5}$=2.8,
∵线性回归方程过这组数据的样本中心点,
∴点(0,2.8)满足线性回归方程,
代入检验只有②符合.
故选:B.

点评 本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{\frac{4}{x}+1,x≥4}\\{lo{g}_{2}x,0<x<4}\end{array}\right.$,则f(8)=$\frac{3}{2}$,若f(a)=f(b)=c,f′(b)<0,则a,b,c的大小关系是b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,已知圆内接四边形ABCD,边AD延长线交BC延长线于点P,连结AC,BD,若AB=AC=6,PD=9,则AD=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网络纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如表统计数据表:
收入x (万元)8.28.610.011.311.9
支出y (万元)6.27.58.08.59.8
根据如表可得回归直线方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,据此估计,该社区一户收入为20万元家庭年支出为(  )
A.11.4万元B.11.8万元C.15.2万元D.15.6万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P(2,$\sqrt{3}$),直线l的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=\sqrt{3}+t}\\{\;}\end{array}\right.$(t为参数).以平面直角坐标系坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cos(θ-$\frac{π}{3}$).
(1)求曲线C的直角坐标方程和直线l的极坐标方程;
(2)设曲线与直线l相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.根据如表数据,得到的回归方程为$\widehaty$=$\widehatb$x+9,则$\widehatb$=(  )
x45678
y54321
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在坐标原点,经过两点P(2,0)和Q(1,$\frac{3}{2}$).
(1)求椭圆C的方程;
(2)设过原点的直线l1与椭圆C交于A,B两点,过椭圆C的右焦点的直线l2与椭圆C交于M,N两点,且l1∥l2,是否存在常数λ,使得|AB|2=λ|MN|?若存在,请求出λ的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有一段“三段论”推理是这样的:对于定义域内可导函数f(x),如果f′(x)>0,那么f(x)在定义域内单调递增;因为函数f(x)=-$\frac{1}{x}$满足在定义域内导数值恒正,所以,f(x)=-$\frac{1}{x}$在定义域内单调递增,以上推理中(  )
A.大前提错误B.小前提错误C.推理形式错误D.结论正确

查看答案和解析>>

同步练习册答案