精英家教网 > 高中数学 > 题目详情
14.已知点P(2,$\sqrt{3}$),直线l的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=\sqrt{3}+t}\\{\;}\end{array}\right.$(t为参数).以平面直角坐标系坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cos(θ-$\frac{π}{3}$).
(1)求曲线C的直角坐标方程和直线l的极坐标方程;
(2)设曲线与直线l相交于A、B两点,求|PA|•|PB|的值.

分析 (1)利用极坐标方程、直角坐标方程间的互化公式,把曲线C的极坐标方程化为直角坐标方程;利用参数方程、直角坐标方程间的互化公式,把直线l的参数方程化为直角坐标方程,再化为极坐标方程.
(2)把直线l的标准的参数方程代入曲线返程,利用韦达定理以及参数的几何意义,求得|PA|•|PB|的值.

解答 解:(1)由$ρ=4cos(θ-\frac{π}{3})$得,$ρ=4cosθcos\frac{π}{3}+4sinθsin\frac{π}{3}=2cosθ+2\sqrt{3}sinθ$,即 ρ2=2ρcosθ+2$\sqrt{3}$ρsinθ,
所以曲线C的直角坐标方程为${x^2}+{y^2}-2x-2\sqrt{3}y=0$,即${(x-1)^2}+{(y-\sqrt{3})^2}=4$.
∵直线l的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{3}t\\ y=\sqrt{3}+t\end{array}\right.$∴直线l的普通方程为$x-\sqrt{3}y+1=0$,
∴直线l的极坐标方程为$ρcosθ-\sqrt{3}ρsinθ+1=0$.
(2)$\left\{\begin{array}{l}x=2+\sqrt{3}t\\ y=\sqrt{3}+t\end{array}\right.$化为标准参数方程$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$,代入曲线C:${x^2}+{y^2}-2x-2\sqrt{3}y=0$得,t2+$\sqrt{3}$t-3=0,
设A、B两点对应的参数分别为t1、t2,则t1•t2=-3,∴|PA|•|PB|=|t1•t2|=3.

点评 本题主要考查参数方程、极坐标方程、直角坐标方程间的互化,参数的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.命题p:?a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),命题q:?x∈N,x3<x2.则(  )
A.p假q假B.p真q假C.p假q真D.p真q真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BF⊥BC,CE=2BF=2AB=4,∠ABF=DCE=120°,G是AF中点.
(1)求证:AF∥平面DCE;
(2)求证:BG⊥DF;
(3)若二面角E-DF-A的大小为150°,求线段DF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.每逢节假日,在微信好友群发红包逐渐成为一种时尚.某女士每月发红包的个数y(个)与月收入x(千元)具有线性相关关系,用最小二乘法建立回归方程为$\hat y$=8.9x+0.3,则下列说法不正确的是(  )
A.y与x具有正线性相关关系
B.回归直线必过点($\overline{x}$,$\overline{y}$)
C.该女士月收入增加1000元,则其发红包的数量约增加9个
D.该女士月收入为3000元,则可断定其发红包的数量为27个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某饮料店某5天的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的数据如下表:
x-2-1012
y54221
甲、乙、丙、丁四位同学对上述数据进行了研究,分别得到了x与y之间的四个线性回归方程:①$\widehaty$=-x+3,②$\widehaty$=-x+2.8,③$\widehaty$=-x+2.6,④$\hat y$=x+2.8,其中正确的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x与y之间的一组数据,已求得关于y与x的线性回归方程为$\widehat{y}$=2.4x+0.95,则k的值为(  )
x0123
yk3.355.658.2
A.1B.0.95C.0.9D.0.85

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=ax-$\frac{a}{x}$-10lnx,h(x)=-x2+(m-2)x+6.
(Ⅰ)若函数f(x)在其定义域上是增函数,求实数a的取值范围;
(Ⅱ)当a=4时,对于任意x1,x2∈(0,1),均有h(x1)≥f(x2)恒成立,试求参数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x)的图象如图所示,求:
(1)函数y=f(x)的定义域;
(2)函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,c=3,cosB=$\frac{1}{4}$,则sinC的值为$\frac{3\sqrt{6}}{8}$.

查看答案和解析>>

同步练习册答案