精英家教网 > 高中数学 > 题目详情
18.已知椭圆C的中心在坐标原点,经过两点P(2,0)和Q(1,$\frac{3}{2}$).
(1)求椭圆C的方程;
(2)设过原点的直线l1与椭圆C交于A,B两点,过椭圆C的右焦点的直线l2与椭圆C交于M,N两点,且l1∥l2,是否存在常数λ,使得|AB|2=λ|MN|?若存在,请求出λ的值; 若不存在,请说明理由.

分析 (1)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)运用离心率公式和内切圆的性质以及三角形的面积公式,计算即可得到a,b,c,进而得到椭圆方程;
(2)设出直线l的方程为x=my+1,代入椭圆方程,运用韦达定理和弦长公式,再设直线x=my,代入椭圆方程,运用弦长公式,化简可得|AB|,再由计算即可得到所求常数λ.

解答 解:(1)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)
由题意可得a=2,$\frac{1}{{a}^{2}}+\frac{\frac{9}{4}}{{b}^{2}}$=1,
可得b=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)设l的方程为x=my+1,M(x1,y1),N(x2,y2),
由直线与椭圆方程,联立得(3m2+4)y2+6my-9=0,
即有y1+y2=-$\frac{6m}{4+3{m}^{2}}$,y1y2=-$\frac{9}{4+3{m}^{2}}$,
|MN|=$\sqrt{1+{m}^{2}}$•$\sqrt{(-\frac{6m}{4+3{m}^{2}})^{2}-4•(-\frac{9}{4+3{m}^{2}})}$=$\frac{12(1+{m}^{2})}{4+3{m}^{2}}$,
设A(x3,y3),B(x4,y4),
由x=my代入椭圆方程可得
消去x,并整理得y2=$\frac{12}{4+3{m}^{2}}$
|AB|=$\sqrt{1+{m}^{2}}$•|y3-y4|=$\sqrt{1+{m}^{2}}$•$\frac{4\sqrt{3}}{\sqrt{4+3{m}^{2}}}$
即有|AB|2=4|MN|.
故存在常数λ=4,使得|AB|2=4|MN|.

点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率公式和内切圆的性质,考查弦长的求法,注意运用直线方程和椭圆方程联立,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,如表是抽样试验结果:
转速x/(rad/s)1614128
每小时生产有缺点的零件数y/件11985
若实际生产中,允许每小时的产品中有缺点的零件数最多为10个,求机器的转速应该控制所在的范围.$\left\{{\begin{array}{l}{b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}}\\{a=\overline y-b\overline x}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某饮料店某5天的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的数据如下表:
x-2-1012
y54221
甲、乙、丙、丁四位同学对上述数据进行了研究,分别得到了x与y之间的四个线性回归方程:①$\widehaty$=-x+3,②$\widehaty$=-x+2.8,③$\widehaty$=-x+2.6,④$\hat y$=x+2.8,其中正确的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=ax-$\frac{a}{x}$-10lnx,h(x)=-x2+(m-2)x+6.
(Ⅰ)若函数f(x)在其定义域上是增函数,求实数a的取值范围;
(Ⅱ)当a=4时,对于任意x1,x2∈(0,1),均有h(x1)≥f(x2)恒成立,试求参数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某单位为了了解用电量y(度)与气温x(度)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下的对照表.
气温x(度)181310-1
用电量y(度)24343864
由表中数据,得回归直线方程$\hat y=\hat bx+\hat a$,若$\hat b=-2$,则$\hat a$=60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x)的图象如图所示,求:
(1)函数y=f(x)的定义域;
(2)函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足($\overrightarrow{a}$-$\sqrt{2}$$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.几何体的俯视图为一边长为2的正三角形,则该几何体的各个面中,面积最大的面的面积为(  )
A.3B.$\sqrt{6}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=logax2+a|x|,若f(-3)<f(4),则不等式f(x2-2x)≤f(3)的解集为(  )
A.(-1,3)B.[-1,3]C.(-∞,-1)∪(3,+∞)D.[-1,0)∪(0,3]

查看答案和解析>>

同步练习册答案