精英家教网 > 高中数学 > 题目详情
数列{an}的各项均为正值,a1,对任意n∈N*,,bn=log2(an+1)都成立.
(1)求数列{an},{bn}的通项公式;
(2)当k>7且k∈N*时,证明对任意n∈N*都有成立.
解:(1)由,得
(a n+1+2an+1)(a n+1﹣2an﹣1)=0,
数列{an}的各项为正值,a n+1+2an+1>0,
∴a n+1=2an+1,
∴a n+1+1=2(an+1),
∵a1+1=2≠0,
∴数列{an+1}为等比数列.
,即为数列{an}的通项公式.
∵bn=log2(an+1),

(2)设S==
∴2S=()+()+()+…+(),
当x>0,y>0时,x+y
∴(x+y)()≥4,
,当且仅当x=y时等号成立.
在2S=()+()+()+…+()中,k>7,n>0,n+1,n+2,…,nk﹣1全为正,
所以2S>+=
∴S>=2(1﹣)>2(1﹣)=
故对任意的n∈N*都有成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有2Sn=an2+an
(1)求数列{an}的通项公式;
(2)设正数数列{cn}满足an+1=(cnn+1,(n∈N*),求数列{cn}中的最大项;

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项和为Sn(n∈N*),已知点(an,4Sn)在函数f (x)=x2+2x+1的图象上.
(1)证明{an}是等差数列,并求an
(2)设m、k、p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an、Sn、(an2成等差数列.
(I)求数列{an}的通项公式;
(II)设bn=an(
1
2
)n
,数列{bn}的前n项和是Tn,求证:
1
2
Tn<2

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和为Sn,则下列命题:
(1)若数列{an}是递增数列,则数列{Sn}也是递增数列;
(2)数列{Sn}是递增数列的充要条件是数列{an}的各项均为正数;
(3)若{an}是等差数列(公差d≠0),则S1•S2…Sk=0的充要条件是a1•a2…ak=0.
(4)若{an}是等比数列,则S1•S2…Sk=0(k≥2,k∈N)的充要条件是an+an+1=0.
其中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)数列{an} 的各项均为正数,a1=p,p>0,k∈N*,an+an+k=f(p,k)•pn
(1)当k=1,f(p,k)=p+k,p=5时,求a2,a3
(2)若数列{an}成等比数列,请写出f(p,k)满足的一个条件,并写出相应的通项公式(不必证明);
(3)当k=1,f(p,k)=p+k时,设Tn=a1+2a2+3a3+…+2an+an+1,求Tn

查看答案和解析>>

同步练习册答案