精英家教网 > 高中数学 > 题目详情
14.已知某帆船中心比赛场馆区的海面上每天海浪高度y(米)可看作是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b,下表是某日各时的浪高数据:
t/时03691215182124
y/米2$\frac{3}{2}$1$\frac{3}{2}$2$\frac{3}{2}$0.99$\frac{3}{2}$2
则最能近似地表示表中数据间对应关系的函数是(  )
A.y=$\frac{1}{2}$cos$\frac{π}{6}$t+1B.y=$\frac{1}{2}$cos$\frac{π}{6}$t+$\frac{3}{2}$C.y=2cos$\frac{π}{6}$t+$\frac{3}{2}$D.y=$\frac{1}{2}$cos6πt+$\frac{3}{2}$

分析 由周期求出ω,由函数的最大值、最小值求出A和b,可得函数的解析式.

解答 解:根据函数的解析式y=Acosωt+b,以及所给的表格,可得 T=$\frac{2π}{ω}$=12-0=12,∴ω=$\frac{2π}{T}$=$\frac{2π}{12}$=$\frac{π}{6}$.
又最大值为2,最小值为1,∴A+b=2,且-A+b=1,解得A=$\frac{1}{2}$,b=$\frac{3}{2}$,
∴函数的解析式为 y=$\frac{1}{2}$cos$\frac{π}{6}$t+$\frac{3}{2}$,
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数$g(x)=f(x)+\frac{1}{5}{x^2}$的图象在点P(5,g(5))处的切线方程是y=-x+8,则f(5)+f'(5)=(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某种树苗成活的概率都为$\frac{9}{10}$,现种植了1000棵该树苗,且每棵树苗成活与否相互无影响,记未成活的棵数记为X,则X的方差为90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一个周期上的图象如图所示,
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间;
(3)若$f(\frac{α}{2}+\frac{7π}{12})=\frac{{3\sqrt{3}}}{5},α∈[-\frac{5π}{2},-2π]$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某个命题和正整数n有关,如果当n=k,k为正整数时命题成立,那么可推得当n=k+1时,命题也成立.现已知当n=7时命题不成立,那么可以推得(  )
A.当n=6时该命题不成立B.当n=6时该命题成立
C.当n=8时该命题不成立D.当n=8时该命题成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足a1+a2+a3=9,a2+a8=18,数列{bn}的前n项和为Sn,且满足Sn=2bn-2.
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinx-ax.
(Ⅰ)对于x∈(0,1),f'(x)>0恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,令h(x)=f(x)-sinx+lnx+1,求h(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤0}\\{2x-y≤4}\end{array}\right.$,则目标函数z=2x+3y的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知角A,B,C的对边分别为a,b,c.若a=2,A=30°,C=45°,则△ABC的面积为(  )
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\frac{1}{2}$($\sqrt{3}$+1)D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案