精英家教网 > 高中数学 > 题目详情

【题目】a为常数,函数fx)=xlnx1)﹣ax2,给出以下结论:(1fx)存在唯一零点与a的取值无关;(2)若a=e2,则fx)存在唯一零点;(3)若ae2,则fx)存在两个零点.其中正确的个数是( )

A.3B.2C.1D.0

【答案】C

【解析】

,,转化的零点个数为的交点个数,利用导函数判断的单调性,进而求解即可.

由题,令fx)=0,即,令x0),

,当x∈(0,e2)时,,当x∈(e2,+∞)时,,

gx)在(0,e2)单调递增,在(e2,+∞)单调递减,

,

时,;当时,,

∴当 时, 有一个零点;当时,没有零点;当时,有两个零点;当时,有一个零点.

所以只有(2)正确,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的图象如图所示,为了得到函数的图象,可以把函数的图象(

A.先向左平移个单位,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

B.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)

C.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位

D.每个点的横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知曲线在点处的切线与直垂直.

(1)求的值;

(2)求函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形中,边所在的直线方程分别为的中点为.

1)求的坐标;

2)求角的内角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知边长为4的正三角形ABC的边ABAC上分别有两点DEDE//BCDE=3,现将△ABC沿DE折成直二面角ADEB,在空间中取一点F使得ADBF为平行四边形,连接ACFC得六面体ABCEDFGBC边上动点.

1)若EG//平面ACF,求CG的长;

2)若GBC中点,求二面角GAED的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于AB的任意一点,垂足为E,点FPB上一点,则下列判断中不正确的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 2013年春节前,有超过20万名来自广西、四川的外来务工人员选择驾乘摩托车沿321国道返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个休息站,让过往的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就对其省籍询问一次,询问结果如图所示:

1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?

2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?

查看答案和解析>>

同步练习册答案