精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-(a-
3
2
)x2+a2x-3ax
,a∈R.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)设函数f(x)在区间(-
2
3
,-
1
3
)
内是减函数,求a的取值范围.
分析:(Ⅰ)先求导函数,再令f'(x)=0,即x2-(2a-3)x+a2-3a=0,解得x1=a-3,x2=a.利用f′(x)>0时,f(x)为增函数,当f′(x)<0时,f(x)为减函数.可解
(Ⅱ)由(Ⅰ)可知f(x)的递减区间是(a-3,a),因为函数f(x)在区间(-
2
3
,-
1
3
)
内是减函数,所以有(-
2
3
,-
1
3
)⊆(a-3,a)
,从而
a-3≤-
2
3
a≥-
1
3
,故可求a的取值范围.
解答:解:(Ⅰ)f(x)=
1
3
x3-(a-
3
2
)x2+a2x-3ax
求导:f'(x)=x2-(2a-3)x+a2-3a
令f'(x)=0,即x2-(2a-3)x+a2-3a=0,解得x1=a-3,x2=a.
列表:
x (-∞,a-3) a-3 (a-3,a) a (a,+∞)
f'(x) + 0 - 0 +
f(x)
即f(x)在(-∞,a-3)递增,(a-3,a)递减,(a,+∞)递增     …(7分)
(Ⅱ)由(Ⅰ)可知f(x)的递减区间是(a-3,a),
因为函数f(x)在区间(-
2
3
,-
1
3
)
内是减函数所以有(-
2
3
,-
1
3
)⊆(a-3,a)
a-3≤-
2
3
a≥-
1
3
,解得:-
1
3
≤a≤
7
3
.…(13分)
点评:此题考查函数的单调性与导数的关系,当f′(x)>0时,f(x)为增函数,当f′(x)<0时,f(x)为减函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案