精英家教网 > 高中数学 > 题目详情
已知点M与两个定点E(8,0),F(5,0)的距离之比等于2,设点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l:y=kx与曲线C相交于不同的两点A、B.
(1)求k的取值范围;
(2)分别取k=0及k=
1
2
,在弦AB上,确定点Q的坐标,使
|AQ|
|QB|
=
|OA|
|OB|
(|OA|<|OB|)成立.由此猜想出一般结论,并给出证明.
(Ⅰ)设M(x,y),依题意有:
|ME|
|MF|
=2

(x-8)2+y2
(x-5)2+y2
=2
,(2分)
整理得曲线C的方程为(x-4)2+y2=4.(4分)
(Ⅱ)(1)由(Ⅰ)知,要使线l:y=kx与曲线C相交于不同的两点,只需曲线C的圆心(4,0)到直线l的距离小于圆的半径2.
|4k|
k2+1
<2

解得,-
3
3
<k<
3
3
.(7分)
(2)设A(x1,y1),B(x2,y2),Q(x0,y0),则有0<x1<x0<x2
当k=0时,A(2,0),B(6,0),
|AQ|
|QB|
=
|OA|
|OB|
知,
x0-2
6-x0
=
2
6

∴x0=3,即点Q的坐标为(3,0).(8分)
当k=
1
2
时,由
y=
1
2
x
(x-4)2+y2=4

得方程5x2-32x+48=0,∴x1+x2=
32
5
x1x2=
48
5

|AQ|
|QB|
=
|OA|
|OB|
知,
x0-x1
x2-x0
=
x1
x2

整理得x0=
2x1x2
x1+x2
=3
,∴y0=
3
2

∴即点Q的坐标为(3,
3
2
).(10分)
猜想,点Q在直线x=3上.(11分)
证明如下:
方法1,由
y=kx
(x-4)2+y2=4

得(1+k2)x2-8x+12=0,(12分)
x1+x2=
8
1+k2
①,x1x2=
12
1+k2

|AQ|
|QB|
=
|OA|
|OB|
知,
x0-x1
x2-x0
=
x1
x2

整理得x0=
2x1x2
x1+x2
=3

即点Q在定直线上,这条直线的方程是x=3.(15分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M与两个定点E(8,0),F(5,0)的距离之比等于2,设点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l:y=kx与曲线C相交于不同的两点A、B.
(1)求k的取值范围;
(2)分别取k=0及k=
1
2
,在弦AB上,确定点Q的坐标,使
|AQ|
|QB|
=
|OA|
|OB|
(|OA|<|OB|)成立.由此猜想出一般结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区二模)已知
i
=(1,0),
c
=(0,
2
)
,若过定点A(0,
2
)
、以
i
c
(λ∈R)为法向量的直线l1与过点B(0,-
2
)
c
i
为法向量的直线l2相交于动点P.
(1)求直线l1和l2的方程;
(2)求直线l1和l2的斜率之积k1k2的值,并证明必存在两个定点E,F,使得|
PE
|+|
PF
|
恒为定值;
(3)在(2)的条件下,若M,N是l:x=2
2
上的两个动点,且
EM
FN
=0
,试问当|MN|取最小值时,向量
EM
+
FN
EF
是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市丰台区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知点M与两个定点E(8,0),F(5,0)的距离之比等于2,设点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l:y=kx与曲线C相交于不同的两点A、B.
(1)求k的取值范围;
(2)分别取k=0及k=,在弦AB上,确定点Q的坐标,使(|OA|<|OB|)成立.由此猜想出一般结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 圆锥曲线与方程》2010年单元测试卷(4)(解析版) 题型:解答题

已知点M与两个定点E(8,0),F(5,0)的距离之比等于2,设点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l:y=kx与曲线C相交于不同的两点A、B.
(1)求k的取值范围;
(2)分别取k=0及k=,在弦AB上,确定点Q的坐标,使(|OA|<|OB|)成立.由此猜想出一般结论,并给出证明.

查看答案和解析>>

同步练习册答案