精英家教网 > 高中数学 > 题目详情
A={a1 , a2 , … , an}⊆M(n∈N* , n≥2),若a1+a2+…+an=a1a2…an,则称集合A是集合M的n元“好集”.
(1)写出实数集R上的一个二元“好集”;
(2)是否存在正整数集合N*上的二元“好集”?说明理由;
(3)求出正整数集合N*的所有三元“好集”.
分析:根据集合中元素满足的性质a1+a2+…+an=a1a2…an,可验证{-1,
1
2
}符合条件求解(1);
对(2)可用反证法证明:在正整数集合N*上的二元“好集”不存在;
对(3)利用不等式的放缩技巧,不妨设a3>a2>a1,a1a2a3=a1+a2+a3<3a3,这样就可限制a1、a2的大小,从而求出符合条件的“好集”.
解答:解:(1)∵-1+
1
2
=(-1)×
1
2
,∴A={-1, 
1
2
}

(2)设A={a1,a2}是正整数集N*上的二元“好集”,
则a1+a2=a1a2a1 , a2N*,不妨设a2>a1
则a1=a1a2-a2=a2(a1-1),a1-1=
a1
a2
,∵0<
a1
a2
<1

∴满足a1-1=
a1
a2
的a1∈N*不存在;
故不存在正整数集合N*上的二元“好集”.
(3)设A={a1,a2,a3}是正整数集N*上的三元“好集”,不妨设a3a2a1(a1a2a3N*)
∵a1a2a3=a1+a2+a3<3a3⇒a1a2<3,
满足a1a2<3的正整数只有a1=1,a2=2,代入a1a2a3=a1+a2+a3得a3=3,
故正整数集合N*的所有三元“好集”为{1,2,3}.
点评:本题借助新定义问题,考查集合中元素的互异性、确定性、无序性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}.
(Ⅰ)试求an+1与an的关系,并求{an}的通项公式;
(Ⅱ)当a=1,a1
1
2
时,证明
n
k=1
(ak-ak+1)ak+2
1
32

(Ⅲ)当a=1时,证明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,ak}(k≥2),其中a1∈Z(i=1,2,L,k),若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
设集合T={(a,b)|a∈A,b∈A,a-b∈A)},其中(a,b)是有序数对,集合T 中的元素个数分别为n.
(Ⅰ)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合T;
(Ⅱ)对任何具有性质P的集合A,求n的最大值(用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值;
(Ⅲ)若数组A=(a1,a2,a3)中的“元”满足a12+a22+a32=1.设数组Bm(m=1,2,3,…,n)含有四个“元”bm1,bm2,bm3,bm4,且bm12+bm22+bm32+bm42=m,求A与Bm的所有含有三个“元”的子数组的关系数C(A,Bm)(m=1,2,3,…,n)的最大值.

查看答案和解析>>

科目:高中数学 来源:2003年江苏省高考数学试卷(解析版) 题型:解答题

设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}.
(Ⅰ)试求an+1与an的关系,并求{an}的通项公式;
(Ⅱ)当时,证明
(Ⅲ)当a=1时,证明

查看答案和解析>>

同步练习册答案