5£®ÔÚËıßÐÎABCDÖУ¬$\overrightarrow{AB}$=£¨2£¬-2£©£¬$\overrightarrow{BC}$=£¨x£¬y£©£¬$\overrightarrow{CD}$=£¨1£¬$\frac{7}{2}$£©£®
£¨1£©Èô$\overrightarrow{BC}$¡Î$\overrightarrow{DA}$£¬Çóx£¬yÖ®¼äµÄ¹ØÏµÊ½£»
£¨2£©Âú×㣨1£©µÄͬʱÓÖÓÐ$\overrightarrow{AC}$¡Í$\overrightarrow{BD}$£¬Çóx£¬yµÄÖµÒÔ¼°ËıßÐÎABCDµÄÃæ»ý£®

·ÖÎö £¨1£©$\overrightarrow{DA}$=$\overrightarrow{DC}+\overrightarrow{CB}+\overrightarrow{BA}$£®$\overrightarrow{BC}$¡Î$\overrightarrow{DA}$£¬ÀûÓÃÏòÁ¿¹²Ïß¶¨Àí¼´¿ÉµÃ³ö£®£®
£¨2£©$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{BC}$=£¨2+x£¬-2+y£©£¬$\overrightarrow{BD}$=$\overrightarrow{BC}+\overrightarrow{CD}$=$£¨x+1£¬y+\frac{7}{2}£©$£®ÓÉ$\overrightarrow{AC}$¡Í$\overrightarrow{BD}$£¬¿ÉµÃ$\overrightarrow{AC}$•$\overrightarrow{BD}$=0£¬ÔÙÀûÓÃSABCD=$\frac{1}{2}|\overrightarrow{AC}||\overrightarrow{BD}|$¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©$\overrightarrow{DA}$=$\overrightarrow{DC}+\overrightarrow{CB}+\overrightarrow{BA}$=-$£¨1£¬\frac{7}{2}£©$-£¨x£¬y£©-£¨2£¬-2£©=£¨-3-x£¬-y-$\frac{3}{2}$£©£®
¡ß$\overrightarrow{BC}$¡Î$\overrightarrow{DA}$£¬¡àx£¨-y-$\frac{3}{2}$£©-y£¨-3-x£©=0£¬»¯Îªx=2y£®
£¨2£©$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{BC}$=£¨2+x£¬-2+y£©£¬$\overrightarrow{BD}$=$\overrightarrow{BC}+\overrightarrow{CD}$=$£¨x+1£¬y+\frac{7}{2}£©$£®
¡ß$\overrightarrow{AC}$¡Í$\overrightarrow{BD}$£¬¡à£¨2+x£©£¨x+1£©+£¨y-2£©£¨y+$\frac{7}{2}$£©=0£¬ÓÖx=2y£¬
ÁªÁ¢½âµÃ$\left\{\begin{array}{l}{x=1}\\{y=\frac{1}{2}}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=-4}\\{y=-2}\end{array}\right.$£®
¡à$\overrightarrow{AC}$=$£¨3£¬-\frac{3}{2}£©$£¬$\overrightarrow{BD}$=£¨2£¬4£©£¬$|\overrightarrow{AC}|$=$\frac{3\sqrt{5}}{2}$£¬$|\overrightarrow{BD}|$=$2\sqrt{5}$£®
»ò$\overrightarrow{AC}$=£¨-2£¬-4£©£¬$\overrightarrow{BD}$=£¨-3£¬$\frac{3}{2}$£©£¬$|\overrightarrow{AC}|$=$2\sqrt{5}$£¬$|\overrightarrow{BD}|$=$\frac{3\sqrt{5}}{2}$£®
¡àSABCD=$\frac{1}{2}|\overrightarrow{AC}||\overrightarrow{BD}|$=$\frac{1}{2}¡Á2\sqrt{5}¡Á\frac{3\sqrt{5}}{2}$=$\frac{15}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿¹²Ïß¶¨Àí¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹²Ïß¡¢ÏòÁ¿Ä£µÄ¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÔ£¨1£¬-1£©ÎªÔ²ÐÄÇÒÓëÖ±Ïß$x+y-\sqrt{6}=0$ÏàÇеÄÔ²µÄ·½³ÌΪ£¨¡¡¡¡£©
A£®£¨x+1£©2+£¨y-1£©2=6B£®£¨x-1£©2+£¨y+1£©2=6C£®£¨x+1£©2+£¨y-1£©2=3D£®£¨x-1£©2+£¨y+1£©2=3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÔ²CµÄ°ë¾¶Îª1£¬Ô²ÐÄC£¨a£¬2a-4£©£¬£¨ÆäÖÐa£¾0£©£¬µãO£¨0£¬0£©£¬A£¨0£¬3£©
£¨1£©ÈôÔ²C¹ØÓÚÖ±Ïßx-y-3=0¶Ô³Æ£¬¹ýµãA×÷Ô²CµÄÇÐÏߣ¬ÇóÇÐÏߵķ½³Ì£»
£¨2£©ÈôÔ²CÉÏ´æÔÚµãP£¬Ê¹|PA|=|2PO|£¬ÇóÔ²ÐÄCµÄºá×ø±êaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁÐËÄ×麯ÊýÖУ¬±íʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=lgx2£¬g£¨x£©=2lgxB£®f£¨x£©=$\sqrt{x+2}$•$\sqrt{x-2}$£¬g£¨x£©=$\sqrt{£¨x+2£©£¨x-2£©}$
C£®f£¨x£©=x-2£¬g£¨x£©=$\sqrt{£¨{x-2£©}^{2}}$D£®f£¨x£©=lgx-2£¬g£¨x£©=lg$\frac{x}{100}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÓÐÒ»Åú²ÄÁÏ¿ÉÒÔ½¨³É80mµÄΧǽ£¬ÈôÓô˲ÄÁÏÔÚÒ»±ß¿¿Ç½µÄµØ·½Î§³ÉÒ»¿é¾ØÐγ¡µØ£¬ÖмäÓÃͬÑùµÄ²ÄÁϸô³ÉÈý¸öÃæ»ýÏàµÈµÄС¾ØÐΣ¨ÈçͼËùʾ£©£¬ÇÒΧǽºñ¶È²»¼Æ£¬ÔòΧ³ÉµÄ¾ØÐεÄ×î´óÃæ»ýΪ£¨¡¡¡¡£©
A£®200m2B£®360m2C£®400m2D£®480m2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÀûÓÃÇØ¾ÅÉØËã·¨¹«Ê½$\left\{\begin{array}{l}{{v}_{0}={a}_{n}}\\{{v}_{k}={v}_{k-1}x+{a}_{n-k}}\end{array}\right.$£¬£¨k=1£¬2£¬3£¬¡­£¬n£©£®¼ÆËã¶àÏîʽf£¨x£©=3x4-x2+2x+1£¬µ±x=2ʱµÄº¯ÊýÖµ£»Ôòv3=24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®É躯Êýf£¨x£©=$\frac{£¨x+1£©^{2}+x}{{x}^{2}+1}$µÄ×î´óֵΪM£¬×îСֵΪm£¬ÔòM+m=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÃüÌâ¡°ÈÎÒâx¡ÊR£¬x2+x+1¡Ý0¡±µÄ·ñ¶¨ÊÇ´æÔÚx¡ÊR£¬x2+x+1£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÅжÏÖ±Ïßkx-y+3=0ÓëÍÖÔ²$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1µÄλÖùØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸