精英家教网 > 高中数学 > 题目详情
13.下列四组函数中,表示同一函数的是(  )
A.f(x)=lgx2,g(x)=2lgxB.f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$,g(x)=$\sqrt{(x+2)(x-2)}$
C.f(x)=x-2,g(x)=$\sqrt{({x-2)}^{2}}$D.f(x)=lgx-2,g(x)=lg$\frac{x}{100}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.

解答 解:对于A,f(x)=lgx2=2lg|x|(x$\sqrt{≠}$0),与g(x)=2lgx(x>0)的定义域不同,对应关系也不同,不是同一函数;
对于B,f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$=$\sqrt{(x+2)(x-2)}$(x≥2),与g(x)=$\sqrt{(x+2)(x-2)}$(x≤-2或x≥2)的定义域不同,不是同一函数;
对于C,f(x)=x-2(x∈R),与g(x)=$\sqrt{{(x-2)}^{2}}$=|x-2|(x∈R)的对应关系不同,不是同一函数;
对于D,f(x)=lgx-2(x>0),与g(x)=lg$\frac{x}{100}$=lgx-2(x>0)的定义域相同,对应关系也相同,是同一函数.
故选:D.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.给定下列命题,其中真命题的个数为:(  )
①已知a,b,m∈R,若am2<bm2,则a<b;
②“矩形的对角线相等”的逆命题;
③“若xy=0,则x、y中至少有一个为0”的否命题;
④如果将一组数据中的每一个数都加上同一个非零常数,那么这组数据的平均数和方差都改变.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线ax+by=r2与圆x2+y2=r2没有公共点,则点P(a,b)与圆的位置关系是(  )
A.在圆上B.在圆内C.在圆外D.以上皆有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线y=x2+1在点P(-1,2)处的切线方程为(  )
A.y=-x+3B.y=-2x+4C.y=-x+1D.y=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mx3+nx(x∈R).若函数f(x)的图象在点x=3处的切线与直线24x-y+1=0平行,函数f(x)在x=1处取得极值,
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在[-2,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sinα+cosα=$\frac{2}{3}$,且0<α<π,则cosα-sinα=(  )
A.$\frac{2\sqrt{3}}{3}$B.-$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{14}}{3}$D.-$\frac{\sqrt{14}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四边形ABCD中,$\overrightarrow{AB}$=(2,-2),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(1,$\frac{7}{2}$).
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x,y之间的关系式;
(2)满足(1)的同时又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求x,y的值以及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+(y-1)2=9,直线l:x-my+m-2=0,且直线l与圆C相交于A、B两点.
(Ⅰ)若|AB|=4$\sqrt{2}$,求直线l的倾斜角;
(Ⅱ)若点P(2,1)满足$\overrightarrow{AP}$=$\overrightarrow{PB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分线交BC于D,则$\overrightarrow{AD}$$•\overrightarrow{AC}$的值等于(  )
A.$\frac{17}{5}$B.$\frac{33}{5}$C.6D.$\frac{27}{5}$

查看答案和解析>>

同步练习册答案