精英家教网 > 高中数学 > 题目详情
3.给定下列命题,其中真命题的个数为:(  )
①已知a,b,m∈R,若am2<bm2,则a<b;
②“矩形的对角线相等”的逆命题;
③“若xy=0,则x、y中至少有一个为0”的否命题;
④如果将一组数据中的每一个数都加上同一个非零常数,那么这组数据的平均数和方差都改变.
A.0B.1C.2D.3

分析 ①由题意m2>0,根据不等式的性质可得结论;
②,若一个四边形的对角线相等,则这个四边形不一定矩形;
③,“若xy≠0,则x、y都不为0”,为真命题;
④,将一组数据中的每一个数都加上同一个非零常数,那么这组数据的平均数一定改变.

解答 解:对于①,由题意m2>0,根据不等式的性质可得①真命题;
对于②,“矩形的对角线相等”的逆命题是:若一个四边形的对角线相等,则这个四边形是矩形,故为假命题;
对于③,“若xy=0,则x、y中至少有一个为0”的否命题是:③“若xy≠0,则x、y都不为0”,为真命题;
对于④,将一组数据中的每一个数都加上同一个非零常数,那么这组数据的平均数一定改变,故为假命题;
故选:C.

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设数列{an}是等差数列,且a2=-2,a8=6,数列{an}的前n项和为Sn,则S9=(  )
A.27B.18C.20D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若幂函数y=xa(a∈R)的图象经过点(4,2),则a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线C1:y2=8x的焦点F到双曲线C2:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1,({a>0,b>0})$的渐近线的距离为$\frac{{4\sqrt{5}}}{5}$,P是抛物线C1的一动点,P到双曲线C2的上焦点F1(0,c)的距离与到直线x+2=0的距离之和的最小值为3,则该双曲线的方程为(  )
A.$\frac{y^2}{2}-\frac{x^2}{3}=1$B.${y^2}-\frac{x^2}{4}=1$C.$\frac{y^2}{4}-{x^2}=1$D.$\frac{y^2}{3}-\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C在x轴的上方,且曲线C上的任意一点到点F(0,1)的距离比到直线y=-2的距离都小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)设m>0,过点M(0,m)的直线与曲线C相交于A,B两点.
①若△AFB是等边三角形,求实数m的值;
②若$\overrightarrow{FA}•\overrightarrow{FB}<0$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥$\frac{3}{5}$|CD|,则双曲线离心率的取值范围为[$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以(1,-1)为圆心且与直线$x+y-\sqrt{6}=0$相切的圆的方程为(  )
A.(x+1)2+(y-1)2=6B.(x-1)2+(y+1)2=6C.(x+1)2+(y-1)2=3D.(x-1)2+(y+1)2=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从抛物线y2=16x上各点向x轴作垂线,其垂线段中点的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)若过点P(3,2)的直线l与轨迹E相交于A、B两点,且点P是弦AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四组函数中,表示同一函数的是(  )
A.f(x)=lgx2,g(x)=2lgxB.f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$,g(x)=$\sqrt{(x+2)(x-2)}$
C.f(x)=x-2,g(x)=$\sqrt{({x-2)}^{2}}$D.f(x)=lgx-2,g(x)=lg$\frac{x}{100}$

查看答案和解析>>

同步练习册答案