精英家教网 > 高中数学 > 题目详情
18.已知sinα+cosα=$\frac{2}{3}$,且0<α<π,则cosα-sinα=(  )
A.$\frac{2\sqrt{3}}{3}$B.-$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{14}}{3}$D.-$\frac{\sqrt{14}}{3}$

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,可得2sinαcosα=-$\frac{5}{9}$,α为钝角,从而求得cosα-sinα=-$\sqrt{{(cosα-sinα)}^{2}}$ 的值.

解答 解:∵sinα+cosα=$\frac{2}{3}$,且0<α<π,∴1+2sinαcosα=$\frac{4}{9}$,∴2sinαcosα=-$\frac{5}{9}$,∴α为钝角,
∴cosα-sinα=-$\sqrt{{(cosα-sinα)}^{2}}$=-$\sqrt{1-2sinαcosα}$=-$\sqrt{1+\frac{5}{9}}$=-$\frac{\sqrt{14}}{3}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥$\frac{3}{5}$|CD|,则双曲线离心率的取值范围为[$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在正方体ABCD-A1B1C1D1中,点M,N分别是B1C1,CC1的中点,则直线A1M与DN的位置关系是相交.(填“平行”、“相交”或“异面”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在平面直角坐标系xOy中的双曲线C,它的中心在原点,焦点在x轴上,F1,F2分别为左、右焦点,F1(-5,0),离心率为5.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)在双曲线右支上一点P满足|PF1|+|PF2|=14,试判定△PF1F2的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四组函数中,表示同一函数的是(  )
A.f(x)=lgx2,g(x)=2lgxB.f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$,g(x)=$\sqrt{(x+2)(x-2)}$
C.f(x)=x-2,g(x)=$\sqrt{({x-2)}^{2}}$D.f(x)=lgx-2,g(x)=lg$\frac{x}{100}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.以下命题中,正确命题的序号是②③.
①函数y=tanx在定义域内是增函数;
②函数y=2sin(2x+$\frac{π}{3}$)的图象关于x=$\frac{π}{12}$成轴对称;
③已知$\overrightarrow{b}$=(3,4),$\overrightarrow{a}$•$\overrightarrow{b}$=-2,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$的方向上的投影是-$\frac{2}{5}$
④如果函数f(x)=ax2-2x-3在区间(-∞,4)上是单调递减的,则实数a的取值范围是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.利用秦九韶算法公式$\left\{\begin{array}{l}{{v}_{0}={a}_{n}}\\{{v}_{k}={v}_{k-1}x+{a}_{n-k}}\end{array}\right.$,(k=1,2,3,…,n).计算多项式f(x)=3x4-x2+2x+1,当x=2时的函数值;则v3=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b是非零实数,若a>b,则命题正确的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a2>abC.$\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知与向量$\overrightarrow{v}$=(1,0)平行的直线l与双曲线$\frac{{x}^{2}}{4}$-y2=1相交于A、B两点,则|AB|的最小值为4.

查看答案和解析>>

同步练习册答案