【题目】已知f'(x)=2x+m,且f(0)=0,函数f(x)的图象在点A(1,f(1))处的切线的斜率为3,数列
的前n项和为Sn , 则S2017的值为( )
A.![]()
B.![]()
C.![]()
D.![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆G:
+y2=1,与x轴不重合的直线l经过左焦点F1 , 且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.
(1)若直线l的斜率为1,求直线OM的斜率;
(2)是否存在直线l,使得|AM|2=|CM||DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设公比不为1的等比数列{an}的前n项和Sn , 已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n﹣1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(﹣1)nlog2an , 求数列{bn}的前2017项和T2017 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是边长为2的正三角形,AB=BD=
,PB=3.![]()
(1)求证:平面PAD⊥平面ABCD;
(2)设Q是棱PC上的点,当PA∥平面BDQ时,求二面角A﹣BD﹣Q的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜边
,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).![]()
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当
时,记四面体C1﹣BEC的体积为V1 , 四面体D﹣BEC的体积为V2 , 求V1:V2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=a(x﹣1)2﹣xe2﹣x .
(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求a的值;
(Ⅱ)若
,求f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心为
,半径为1的圆.
(1)求曲线
,
的直角坐标方程;
(2)设
为曲线
上的点,
为曲线
上的点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com