如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.
(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
(1);(2);(3)证明见解析,定点为.
【解析】
试题分析:(1)本题动点依赖于圆上中,本来这种问题可以用动点转移法求轨迹方程,但本题用动点转移法会很繁,考虑到圆的半径不变,垂直平分线的对称性,我们可以看出
,是定值,而且,因此点轨迹是椭圆,这样我们可以利用椭圆标准方程写出所求轨迹方程;(2)圆锥曲线的过其上点的切线方程,椭圆,切线为,
双曲线,切线为,抛物线,切线为;(3)这题考查同学们的计算能力,现圆锥曲线切线有关的问题,由(2)我们知道切线斜率为,则直线的斜率为,又过点,可以写出直线方程,然后求出点关于直线的对称点的坐标,从而求出直线的方程,接着可从的方程观察出是不是过定点,过哪个定点?这里一定要小心计算.
试题解析:(1)点是线段的垂直平分线,∴
∴动点N的轨迹是以点C(-1,0),A(1,0)为焦点的椭圆.
椭圆长轴长为焦距2c=2.
∴曲线E的方程为 5′
(2)曲线在点处的切线的方程是. 8′
(3)直线的方程为,即 .
设点关于直线的对称点的坐标为,
则,解得
直线PD的斜率为
从而直线PD的方程为:
即, 从而直线PD恒过定点. 16′
考点:(1)椭圆的定义;(2)椭圆的切线方程;(3)垂直,对称,直线过定点问题.
科目:高中数学 来源: 题型:
1 |
3 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足的轨迹为曲线E.
(I)求曲线E的方程;
(II)过点A且倾斜角是45°的直线l交曲线E于两点H、Q,求|HQ|.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高三12月月考理科数学试卷(解析版) 题型:解答题
如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.
(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
查看答案和解析>>
科目:高中数学 来源:2013年广东省佛山市高考数学一模试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年重庆市高三上学期第四次月考理科数学试卷(解析版) 题型:解答题
( 本小题满分12分)如图所示,已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线。
求曲线的方程;
若过定点F(0,2)的直线交曲线于不同的两点(点在点之间),且满足,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com