精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.
(1)求数列{an}的通项公式及前n项和公式;
(2)设数列{bn}的通项公式为bn=
anan+t
,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
分析:(1)设出等差数列的公差为d,根据等差数列的性质及通项公式化简a5+a13=34,S3=9,即可求出首项和公差,分别写出通项公式及前n项和的公式即可;
(2)把(1)求得的通项公式an代入bn=
an
an+t
得到数列{bn}的通项公式,因为b1,b2,bm成等差数列,所以2b2=b1+bm,利用求出的通项公式化简,解出m,因为m与t都为正整数,所以得到此时t和m的值即可.
解答:解:(1)设等差数列{an}的公差为d.由已知得
a5+a13=34
3a2=9

a1+8d=17
a1+d=3  
解得
a1=1
d=2

故an=2n-1,Sn=n2
(2)由(1)知bn=
2n-1
2n-1+t
.要使b1,b2,bm成等差数列,必须2b2=b1+bm
3
3+t
=
1
1+t
+
2m-1
2m-1+t
,(8分).
移项得:
2m-1
2m-1+t
=
6
3+t
-
1
1+t
=
6+6t-3-t
(3+t)(1+t)

整理得m=3+
4
t-1

因为m,t为正整数,所以t只能取2,3,5.
当t=2时,m=7;当t=3时,m=5;当t=5时,m=4.
故存在正整数t,使得b1,b2,bm成等差数列.
点评:此题考查学生灵活运用等差数列的性质、通项公式及前n项和的公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案