精英家教网 > 高中数学 > 题目详情

设数列的前项和为,且.
(1)证明:数列是等比数列;
(2)若数列满足,求数列的前项和为

(1)参考解析;(2)

解析试题分析:(1)依题意可得递推一个等式然后对减即可得到的通项公式.再检验n=1时的情况即可.
(2)由(1)可得等比数列的通项公式.从而得到的通项公式.求数列的前n项和在该通项公式中是一个等比数列和一个等差数列相加.所以是分别对两个数列求和再相加即可.本题(1)是数列中常见的知识点,通过递推在求差把含和的等式转化为只有通项的形式.对于(2)的通项公式是一个和的形式.所以利用两种形式要分开求.
试题解析:(1)证明:因为
  1分
所以当时,
整理得.由,令,得,解得
所以是首项为3,公比为2的等比数列.              6分
(2)解:因为,由,得
所以
所以.                    12分
考点:1.数列的递推形式.2.等比数列求和.3.等差数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列是公差不为零的等差数列,,且的等比中项.
(1)求数列的通项公式;
(2)设数列的前项和为,试问当为何值时,最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

大学生自主创业已成为当代潮流。长江学院大三学生夏某今年一月初向银行贷款20000元作开店资金,全部用作批发某种商品,银行贷款的年利率为6%,约定一年后一次还清贷款。已知夏某每月月底获得的利润是该月月初投人资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出。
(1)设夏某第个月月底余元,第个月月底余元,写出的值并建立的递推关系式;
(2)预计年底夏某还清银行贷款后的纯收入。(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,.
(1)证明:数列是等比数列,并求数列的通项公式;
(2)在数列中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若,求证:使得成等差数列的点列在某一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列中,公差,其前项和为,且满足:
(1)求数列的通项公式;
(2)令,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在等比数列中,,且的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为数列的前项和,且有
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列是单调递增数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知单调递增的等比数列满足:,且的等差中项.
(1)求数列的通项公式;
(2)若,求使成立的正整数的最小值.

查看答案和解析>>

同步练习册答案