精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+bx+c是一个偶函数,且
lim
x→1
f(x)=0,
lim
x→-2
f(x)=-3,求出这一函数最大值.
分析:由题意可知f(x)=ax2+c.再由
lim
x→1
f(x)=0,
lim
x→-2
f(x)=-3,可知a=-1,c=1,由此可以求出答案.
解答:解:∵f(x)=ax2+bx+c是一偶函数,
∴f(-x)=f(x),
即ax2+bx+c=ax2-bx+c.
∴b=0.∴f(x)=ax2+c.
lim
x→1
f(x)=
lim
x→1
ax2+c=a+c=0,
lim
x→-2
f(x)=
lim
x→-2
ax2+c=4a+c=-3,
∴a=-1,c=1.
∴f(x)=-x2+1.
∴f(x)max=f(0)=1.
∴f(x)的最大值为1.
点评:本题考查偶函数的性质、函数极限的求法和二次函数的性质,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案