精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的首项a1=1,且公差d>0,其第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三项、第四项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}满足cn=cn-1+bn(n≥2),且c1=2,求{cn}的通项公式.
分析:(1)利用等差数列的通项公式将第二项,第五项,第十四项用{an}的首项与公差表示,再据此三项成等比数列,列出方程,求出公差,利用等差数列及等比数列的通项公式求出数列{an}与{bn}的通项公式.
(2)由题意可得,cn-cn-1=bn=3n,利用叠加法求解即可
解答:解:(1)∵a2=1+d,a5=1+4d,a14=1+13d
∴(1+4d)2=(1+d)(1+13d)
∵d>0
∴d=2
∴an=1+2(n-1)=2n-1
∴b2=a2=3,b3=a5=9,q=
b3
b2
=
9
3
=3

bn=b2qn-2=3•3n-2=3n-1
(2)∵cn=cn-1+bn(n≥2
∴cn-cn-1=bn=3n-1
∴c2-c1=3
c3-c2=32

cn-cn-1=3n-1
以上式子相加可得,cn-c1=3+32 +…+3n-1=
3(1-3n-1)
1-3

cn=2+
3n-3
2
=
3n+1
2
点评:本题主要考查了利用基本量表示等差数列、等比数列的通项,叠加求解数列的通项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案