精英家教网 > 高中数学 > 题目详情

已知a>0且a≠1,则两函数f(x)=ax和g(x)=logax的图象只可能是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:由底数a与1的大小关系确定f(x)和函数h(x)=logax的图象,再由函数h(x)=logax的图象经图象变换得到g(x)的图象.
解答:若选A,则g(x)=logax;
若选B,则g(x)=logax;
若选C,g(x)=-loga(-x);
若选D,则g(x)=loga(-x).
点评:本题主要考查了指数函数与对数函数图象之间的关系以及通过图象变换得到新的函数图象的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,则使方程loga(x-ak)=loga2(x2-a2)有解时的k的取值范围为
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案