【题目】在无穷数列
中,
,对于任意
,都有
,
,设
,记使得
成立的
的最大值为
.
(
)设数列
为
,
,
,
,
,写出
,
,
的值.
(
)若
为等比例数列,且
,求
的值.
(
)若
为等差数列,求出所有可能的数列
.
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整;函数
的解析式为
= (直接写出结果即可);
(2)求函数
的单调递增区间;
(3)求函数
在区间
上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
+y2=1(a>1),过直线l:x=2上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为±
. (Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,求△POA面积的最小值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:![]()
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC ![]()
(1)求证:A,B,C,P四点共圆;
(2)若∠CAD=
,AB=1,求四边形ABCP的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b , g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a , b , c , d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数fn(x)=
(n∈N*),关于此函数的说法正确的序号是
①fn(x)(n∈N*)为周期函数;②fn(x)(n∈N*)有对称轴;③(
,0)为fn(x)(n∈N*)的对称中心:④|fn(x)|≤n(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方形
,
,
,以
的中点
为原点,建立如图所示的平面直角坐标系
.![]()
(1)求以
为焦点,且过
两点的椭圆的标准方程;
(2)在(1)的条件下,过点
作直线
与椭圆交于不同的两点
,设
,点
坐标为
,若
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com