精英家教网 > 高中数学 > 题目详情
1.已知A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B是A的非空子集,求实数a的值.

分析 解一元二次方程求得集合A,由B是A的非空子集,分类讨论,分别求出实数a的取值.

解答 解:由已知,A={-2,4}.
∵B是A的非空子集,∴B={-2}或{4}或{-2,4}.
若B={-2},则有$\left\{\begin{array}{l}{-2-2=-a}\\{(-2)(-2)={a}^{2}-12}\end{array}\right.$,解得:a=4;

若B={4},则有$\left\{\begin{array}{l}{4+4=-a}\\{4×4={a}^{2}-12}\end{array}\right.$,解得a∈∅;

若B={-2,4},由韦达定理可得$\left\{\begin{array}{l}{-2+4=-a}\\{(-2)×4={a}^{2}-12}\end{array}\right.$,解得a=-2
综上,所求实数a的值为-2或4.

点评 本题主要考查集合关系中参数的取值范围问题,一元二次方程的解法,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设an=$\frac{|sin1|}{2}$+$\frac{|sin2|}{{2}^{2}}$+…+$\frac{|sinn|}{{2}^{n}}$,则对任意正整数m,n(m>n)都成立的是(  )
A.am-an<$\frac{1}{{2}^{n}}$B.am-an>$\frac{1}{{2}^{n}}$C.am-an<$\frac{1}{{2}^{m}}$D.am-an>$\frac{m-n}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p的否命题是“若A?B,则∁UA∩∁UB=∁UB”,写出命题p的逆否命题是若∁UA∩∁UB=∁UB,则A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若z=cosθ+isinθ(i为虚数单位),则$θ=\frac{π}{2}+2kπ({k∈Z})$是z2=-1的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在半径为1的圆周上随机选取三点,它们构成一个锐角三角形的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某三棱锥的三视图如图所示,则该三棱锥的4个面中,直角三角形的个数是1个,它的表面积是21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知圆C的圆心在y轴的正半轴上,且与x轴相切,圆C与直线y=kx+3相交于A,B两点.当$k=\sqrt{3}$时,$|AB|=\sqrt{15}$.
(Ⅰ)求圆C的方程;
(Ⅱ)当k取任意实数时,问:在y轴上是否存在定点T,使得∠ATB始终被y轴平分?若存在,求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-2x-8≤0,x∈R},B={x|x2-(5+m)x+5m≤0,m∈R}.
(1)若A∩B=[2,4],求实数m的值;
(2)设全集为R,若B⊆∁RA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{π}{4}<a<\frac{π}{2}$,则sina,cosa,tana的大小关系为cosα<sinα<tanα.

查看答案和解析>>

同步练习册答案