精英家教网 > 高中数学 > 题目详情
11.若$\frac{π}{4}<a<\frac{π}{2}$,则sina,cosa,tana的大小关系为cosα<sinα<tanα.

分析 根据角的取值范围,结合单位圆分别作出正弦线MP,余弦线OM,正切线AT,借助三角函数线能准确判断sina,cosa,tana的大小关系.

解答 解:∵$\frac{π}{4}<a<\frac{π}{2}$,
∴如图,作出正弦线MP,余弦线OM,正切线AT,
结合图形,得OM<OP<AT,
∴cosα<sinα<tanα.
故答案为:cosα,sinα,tanα.

点评 本题考查sina,cosa,tana的大小关系的判断,是基础题,解题时要根据角的取值范围,结合单位圆分别作出正弦线MP,余弦线OM,正切线AT,合理借助三角函数线能取得事半功倍之效果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B是A的非空子集,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{a}$=(3,4),则与$\overrightarrow{a}$共线的单位向量是(  )
A.(3,4)B.($\frac{3}{5}$,$\frac{4}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与x轴交于点A,以OA为边作等腰三角形OAP,其顶点P在椭圆上,且∠OPA=120°.则椭圆的离心率e=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的有(  )个
(1)棱柱的所有侧棱平行且相等;
(2)直棱柱的侧面是矩形;
(3){平行六面体}⊆{正四棱柱}⊆{长方体}⊆{正方体};
(4)正棱锥的顶点在底面上射影是底面中心;
(5)圆锥的轴截面是等腰三角形;
(6)球的小圆的半径等于球半径.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)方程$\sqrt{{x}^{2}+{y}^{2}}$$+\sqrt{(x-3)^{2}+({y-4)}^{2}}$=5表示的曲线是线段
(2)方程$\sqrt{{x}^{2}+{y}^{2}}$$+\sqrt{(x-3)^{2}+({y-4)}^{2}}$=6表示的曲线又是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|=$\frac{2\sqrt{3}}{3}$|$\overrightarrow{a}$|,则$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=$\frac{x}{lo{g}_{2}(x-1)}$的定义域是{x|x>1,且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=3x+5x的零点所在的区间是(-1,0).

查看答案和解析>>

同步练习册答案