【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示:
其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.
(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示)
年龄(岁) | 20 | 30 | 40 | 50 |
周均学习成语知识时间(小时) | 2.5 | 3 | 4 | 4.5 |
由表中数据,试求线性回归方程,并预测年龄为55岁观众周均学习成语知识时间.
参考公式: , .
科目:高中数学 来源: 题型:
【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为.
(1)求椭圆的方程;
(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆于两点为圆的直径,且直线的斜率大于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则
A. ①反映了建议(Ⅱ),③反映了建议(Ⅰ)
B. ①反映了建议(Ⅰ),③反映了建议(Ⅱ)
C. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)
D. ④反映了建议(Ⅰ),②反映了建议(Ⅱ)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.
(Ⅰ)计算渔政船C与渔港O的距离;
(Ⅱ)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?
(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00, ≈3.62, ≈3.61)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| ﹣ |= .
(1)求cos(α﹣β)的值;
(2)若﹣ <β<0<α< ,且sinβ=﹣ ,求sinα的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(Ⅰ)当时,求曲线在处的切线方程;
(Ⅱ)当时,讨论函数的单调性;
(Ⅲ)设斜率为的直线与函数的图象交于, 两点,其中,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[1 000,1 500)。
(1)求居民收入在[2000,3 000)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 000,3 000)的这段应抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的准线与轴交于椭圆的右焦点为的左焦点.椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长其交于点, 为上一动点,且在之间移动.
(1)当取最小值时,求和的方程;
(2)若的边长恰好是三个连续的自然数,当面积取最大值时,求面积最大值以及此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com