精英家教网 > 高中数学 > 题目详情
7.四棱柱ABCD-A1B1C1D1的三视图如图,
(1)求证:D1C⊥AC1
(2)面ADC1与BB1交于点M,求证:MB=MB1

分析 (1)判断几何体是四棱柱为直四棱柱且底面为直角梯形,连结C1D,证明DC1⊥D1C,AD⊥DC1,得到DC1⊥平面ADC1,然后证明DC1⊥AC1
(2)证明ABM和△DCC1相似,然后证明MB=MB1

解答 (1)证明:由三视图得,该四棱柱为直四棱柱且底面为直角梯形,
在直四棱柱ABCD-A1B1C1D1中,连结C1D,
∵DC=DD1,∴四边形DCC1D1是正方形,
∴DC1⊥D1C.又AD⊥CD,AD⊥DD1,DC∩DD1=D,
∴又AD⊥平面DCC1D1,DC1?平面DCC1D1,∴AD⊥DC1
∵AD,DC1?平面ADC1,且AD∩DC1=D,∴DC1⊥平面ADC1
又AC1?平面ADC1,∴DC1⊥AC1
(2)空间中两个角的边对应平行则∠AMB=∠DC1C,又$∠ABM=∠DC{C_1}={90^0}$,
∴△ABM和△DCC1相似,∴$\frac{AB}{DC}=\frac{BM}{{C{C_1}}}=\frac{1}{2}$,∴MB=MB1

点评 本题考查空间几何体的三视图的应用,直线与平面垂直的判定定理以及性质定理的应用,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知U=R,A={x|-2≤x<2},则∁UA={x|x<-2或x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若幂函数f(x)过点(2,8),则满足不等式f(2-a)>f(a-1)的实数a的取值范围是(-∞,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若对任意给定的m∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=2a2m2+am,则正实数a的取值范围是(  )
A.$[{\frac{1}{2},+∞})$B.($\frac{1}{2}$,+∞)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=asinωx+bcosωx(ω>0,a<0)的最小正周期为π,$(-\frac{π}{6},0)$是函数f(x)图象的一个对称中心,且曲线y=f(x)在该点处切线的斜率为-8.
(1)求a,b,ω的值;
(2)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值;
(3)若函数y=g(x)的图象与函数f(x)的图象关于直线x=-$\frac{π}{24}$对称,判断:曲线y=g(x)上是否存在与直线2x+19y+c=0(c为常数)垂直的切线?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在三棱锥ABC-A1B1C1中,底面△ABC为边长为6的等边三角形,点A1在平面ABC内的射影为△ABC的中心.
(1)求证:BC⊥BB1
(2)若AA1与底面ABC所成角为60°,P为CC1的中点,求二面角B1-PA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.焦点为F(0,5),渐进线方程为4x±3y=0的双曲线的方程是(  )
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=1$C.$\frac{y^2}{36}-\frac{x^2}{64}=1$D.$\frac{x^2}{64}-\frac{y^2}{36}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线l经过两点(1,$\sqrt{3}$),B(-2,2$\sqrt{3}$),则直线l的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求$({tan{5°}-\frac{1}{{tan{5°}}}})•\frac{{cos{{70}°}}}{{1+sin{{70}°}}}$的值.

查看答案和解析>>

同步练习册答案