分析 (1)判断几何体是四棱柱为直四棱柱且底面为直角梯形,连结C1D,证明DC1⊥D1C,AD⊥DC1,得到DC1⊥平面ADC1,然后证明DC1⊥AC1;
(2)证明ABM和△DCC1相似,然后证明MB=MB1.
解答
(1)证明:由三视图得,该四棱柱为直四棱柱且底面为直角梯形,
在直四棱柱ABCD-A1B1C1D1中,连结C1D,
∵DC=DD1,∴四边形DCC1D1是正方形,
∴DC1⊥D1C.又AD⊥CD,AD⊥DD1,DC∩DD1=D,
∴又AD⊥平面DCC1D1,DC1?平面DCC1D1,∴AD⊥DC1
∵AD,DC1?平面ADC1,且AD∩DC1=D,∴DC1⊥平面ADC1,
又AC1?平面ADC1,∴DC1⊥AC1;
(2)空间中两个角的边对应平行则∠AMB=∠DC1C,又$∠ABM=∠DC{C_1}={90^0}$,
∴△ABM和△DCC1相似,∴$\frac{AB}{DC}=\frac{BM}{{C{C_1}}}=\frac{1}{2}$,∴MB=MB1.
点评 本题考查空间几何体的三视图的应用,直线与平面垂直的判定定理以及性质定理的应用,考查空间想象能力.
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{2},+∞})$ | B. | ($\frac{1}{2}$,+∞) | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | B. | $\frac{y^2}{16}-\frac{x^2}{9}=1$ | C. | $\frac{y^2}{36}-\frac{x^2}{64}=1$ | D. | $\frac{x^2}{64}-\frac{y^2}{36}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com