分析:(1)根据f
1(x)=
,定义f
n+1 (x)=f
1[f
n(x)],a
n=
(n∈N
*).可得f
1(0)=2,a
1=
=
,f
n+1(0)=f
1[f
n(0)]=
,从而a
n+1=-
a
n.所以数列{a
n}是首项为
,公比为-
的等比数列,故可求数列{a
n}的通项公式.
(2)利用错误相减法求得T
2n=
(1-
),从而9T
2n=1-
,又Q
n=1-
,故当n=1时,2
2n=4,(2n+1)
2=9,所以9T
2n<Q
n;当n=2时,2
2n=16,(2n+1)
2=25,所以9T
2n<Q
n;当n≥3时,2
2n=[(1+1)
n]
2=(C
n0+C
n1+C
n3+…+C
nn)
2>(2n+1)
2,从而得到结论.
解答:解:(1)∵f
1(0)=2,a
1=
=
,f
n+1(0)=f
1[f
n(0)]=
,
∴a
n+1=
=
=
=-
=-
a
n.
∴数列{a
n}是首项为
,公比为-
的等比数列,
∴a
n=
(
-)
n-
1.
(2)∵T
2n=a
1+2a
2+3a
3+…+(2n-1)a
2n-
1+2na
2n,
∴
-T
2n=(-
a
1)+(-
)2a
2+(-
)3a
3+…+(-
)(2n-1)a
2n-1+
(-)2na
2n=a
2+2a
3+…+(2n-1)a
2n-na
2n.
两式相减,得
T
2n=a
1+a
2+a
3+…+a
2n+na
2n.
∴
T
2n=
+n×
(-
)
2n-
1=
-
(-
)
2n+
(-
)
2n-
1.
T
2n=
-
(-
)
2n+
(-
)
2n-
1=
(1-
).
∴9T
2n=1-
.
又Q
n=1-
,
当n=1时,2
2n=4,(2n+1)
2=9,∴9T
2n<Q
n;
当n=2时,2
2n=16,(2n+1)
2=25,∴9T
2n<Q
n;
当n≥3时,2
2n=[(1+1)
n]
2=(C
n0+C
n1+C
n3+…+C
nn)
2>(2n+1)
2,∴9T
2n<Q
n;
综上得:9T
2n<Q
n.
点评:本题以函数为载体,考查数列的通项,考查等比数列的定义,考查错位相减法求数列的和,考查分类讨论的数学思想,综合性强.