【题目】已知ω>0,0<φ<π,直线x=
和x=
是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则
(1)求f(x)的解析式;
(2)设h(x)=f(x)+
.
【答案】
(1)解:由题意可知函数f(x)的最小正周期为
T=2×(
﹣
)=2π,即
=2π,ω=1;
∴f(x)=sin(x+φ);
令x+φ=kπ+
,k∈Z,
将x=
代入可得φ=kπ+
,k∈Z;
∵0<φ<π,∴φ=
;
∴f(x)=sin(x+
);
(2)解:∵f(x)=sin(x+
),
∴h(x)=f(x)+
cos(x+
)
=sin(x+
)+
cos(x+
)
=2×[
sin(x+
)+
cos(x+
)]
=2sin(x+
),
令
+2kπ≤x+
≤
+2kπ,k∈Z,
解得﹣
+2kπ≤x≤
+2kπ,k∈Z;
∵x∈[0,π],
∴h(x)的单调减区间为[0,
].
【解析】(1)根据题意求出ω、φ的值,得出f(x)的解析式;(2)根据f(x)写出h(x)并化简,根据三角函数的图象与性质求出h(x)的单调减区间.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求证: ![]()
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=
,PA=AD=2,AB=BC=1. ![]()
(1)求平面PAB与平面PCD所成二面角的余弦值;
(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是( ) ![]()
A.xA<xB , B比A成绩稳定
B.xA>xB , B比A成绩稳定
C.xA<xB , A比B成绩稳定
D.xA>xB , A比B成绩稳定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定两个命题p:函数y=x2+8ax+1在[﹣1,1]上单调递增;q:方程
=1表示双曲线,如果命题“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣4x+1.![]()
( I)当x∈[0,3]时,画出函数y=f(x)的图象并写出值域;
(II)若函数y=f(x)在区间[a,a+1]上单调,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的倾斜角为135°,直线l1经过点A(3,2),B(a , -1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于( )
A.-4
B.-2
C.0
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com