精英家教网 > 高中数学 > 题目详情
18.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的两个焦点为F1、F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.求椭圆C的方程.

分析 点P在椭圆C上,利用椭圆的定义可得:2a=|PF1|+|PF2|=6.在Rt△PF1F2中,|F1F2|=$\sqrt{|P{F}_{2}{|}^{2}-|P{F}_{1}{|}^{2}}$=2c,又b2=a2-c2,即可得出.

解答 解:∵点P在椭圆C上,∴2a=|PF1|+|PF2|=6,a=3.
在Rt△PF1F2中,|F1F2|=$\sqrt{|P{F}_{2}{|}^{2}-|P{F}_{1}{|}^{2}}$=2$\sqrt{5}$,
故椭圆的半焦距c=$\sqrt{5}$,
从而b2=a2-c2=4,
∴椭圆C的方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$.

点评 本题考查了椭圆的定义标准方程及其性质、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},
(1)若a=-1,求A∩B
(2)若B⊆∁RA,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈(1,+∞),2x>-x+3;命题q:?x∈(0,1),lgx+x>0,则下列为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(2x+φ)的周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,且($\overrightarrow{a}+\overrightarrow{b}$)⊥(2$\overrightarrow{a}-3\overrightarrow{b}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.45°B.60°C.90°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知矩阵$A=[{\begin{array}{l}2&{-1}\\{-4}&3\end{array}}]$
(1)求矩阵A的逆矩阵; 
(2)设曲线C在变化矩阵A作用下得到的曲线C′的方程为xy=1,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若p:?x0∈R,${x_0}^2-{x_0}+1≤0$,则?p:?x∈R,x2-x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知t=(x+1)(x+5),s=(x+3)2,则t和s的大小关系正确的是(  )
A.t>sB.t≥sC.t<sD.t≤s

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A
(1)求证:直线BC是⊙O的切线;
(2)若AE=2,tan∠DEO=$\sqrt{2}$,求AO的长.

查看答案和解析>>

同步练习册答案