精英家教网 > 高中数学 > 题目详情
3.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.1B.2C.3D.6

分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x+2y过点B(3,0)时,z最大值即可.

解答 解:作出可行域如图,
由z=x+2y知,y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
所以动直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的纵截距$\frac{1}{2}$z取得最大值时,
目标函数取得最大值.
由$\left\{\begin{array}{l}{x+2y-3=0}\\{x+3y-3=0}\end{array}\right.$得B(3,0).
结合可行域可知当动直线经过点B(3,0)时,
目标函数取得最大值z=2×3+0=6.
故选:D.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若sinA:sinB:sinC=3:4:5,则此三角形是(  )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.无穷等差数列{an}的各项均为整数,首项为a1、公差为d,Sn是其前n项和,3、21、15是其中的三项,给出下列命题:
①对任意满足条件的d,存在a1,使得99一定是数列{an}中的一项;
②存在满足条件的数列{an},使得对任意的n∈N*,S2n=4Sn成立;
③对任意满足条件的d,存在a1,使得30一定是数列{an}中的一项.
其中正确命题的序号为(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2}\\{x+y≥4}\\{x-y≤1}\end{array}\right.$,则z=3x+y的最大值为(  )
A.8B.11C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x-1,有以下结论:
①2是函数f(x)的一个周期;        
②函数f(x)在(1,2)上单调递减,在(2,3)上单调递增;
③函数f(x)的最大值为1,最小值为0;   
④当x∈(3,4)时,f(x)=23-x
其中,正确结论的序号是①②④.(请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若目标函数z=ax+by(a>0,b>0)满足约束条件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$且最大值为40,则$\frac{5}{a}$+$\frac{1}{b}$的最小值为(  )
A.1B.$\frac{9}{4}$C.4D.$\frac{25}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若点M是△ABC所在平面内的一点,且满足5$\overrightarrow{AM}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$,则△MBC与△ABC的面积比为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cos2α=$\frac{3}{5}$,则sin4α-cos4α的值为(  )
A.$-\frac{3}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案