| A. | 1 | B. | 2 | C. | 3 | D. | 6 |
分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x+2y过点B(3,0)时,z最大值即可.
解答
解:作出可行域如图,
由z=x+2y知,y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
所以动直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的纵截距$\frac{1}{2}$z取得最大值时,
目标函数取得最大值.
由$\left\{\begin{array}{l}{x+2y-3=0}\\{x+3y-3=0}\end{array}\right.$得B(3,0).
结合可行域可知当动直线经过点B(3,0)时,
目标函数取得最大值z=2×3+0=6.
故选:D.
点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 11 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{9}{4}$ | C. | 4 | D. | $\frac{25}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com