精英家教网 > 高中数学 > 题目详情

已知O为坐标原点,△AOB中,边OA所在的直线方程是,边AB所在的直

线方程是,且顶点B的横坐标为6。

    (1)求△AOB中,与边AB平行的中位线所在直线的方程;

    (2)求△AOB的面积;

    (3)已知OB上有点D,满足△AOD与△ABD的面积比为2,求AD所在的直线方程。

 

【答案】

 

(1)设OB的中点为E,则E(3,2),根据直线方程的点斜式:

    OB边上的中位线所在的方程为

    (2)依题意,△AOB中,点A的坐标为(2,6),则B到OA的距离为,而

所以

    (3)根据题意,

   

    所以点D的坐标为

    则AD所在的直线方程为

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(2,1),点P在区域
y≤x
x+y≥2
y>3x-6
内运动,则
OA
OP
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,
设函数f(x)=
OM
ON

(Ⅰ)求函数y=f(x)的表达式和对称轴方程;
(Ⅱ)若角C为△ABC的三个内角中的最大角,且y=f(C)的最小值为0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点M(3,2),若N(x,y)满足不等式组
x≥1
y≥0
x+y≤4
,则
OM
ON
 的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A,B两点的坐标均满足不等式组
x-3y+1≤0
x+y-3≤0
x-1≥0
,则tan∠AOB的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a为常数,设函数f(x)=
OM
ON

(1)求函数y=f(x)的表达式;
(2)若角C∈[
π
3
,π)
且y=f(C)的最小值为0,求a的值;
(3)在(2)的条件下,试画出y=f(x)(x∈[0,π])的简图.

查看答案和解析>>

同步练习册答案