精英家教网 > 高中数学 > 题目详情
4.给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是(  )
A.x-[x]≥0
B.x-[x]<1
C.令f(x)=x-[x],对任意实数x,f(x+1)=f(x)恒成立
D.令f(x)=x-[x],对任意实数x,f(-x)=f(x)恒成立

分析 利用[x]为不大于x的最大整数,结合函数性质求解.

解答 解:在A中,∵[x]为不大于x的最大整数,∴x-[x]≥0,故A正确;
在B中,∵[x]为不大于x的最大整数,∴x-[x]<1,故B正确;
在C中,∵[x]为不大于x的最大整数,f(x)=x-[x],
∴对任意实数x,f(x+1)=f(x)恒成立,故C正确;
在D中,∵[x]为不大于x的最大整数,f(x)=x-[x],
∴f(-3.2)=-3.2-[-3.2]=-3.2+4=0.8,f(3.2)=3.2-[3.2]=3.2-3=0.2,
∴对任意实数x,f(x+1)=f(x)不成立,故D错误.
故选:D.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设p:以抛物线C:y2=kx(k>0)的焦点F和点M(1,$\sqrt{2}$)为端点的线段与抛物线C有交点,q:方程$\frac{x^2}{{13-{k^2}}}$+$\frac{y^2}{2k-2}$=1表示焦点在x轴上的椭圆.
(1)若q为真,求实数k的取值范围;
(2)若p∧q为假,p∨q为真,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的函数f(x)满足f(-x)=-f(x),f(x+2)=f(x),当x∈(0,1)时,f(x)=x,则f(2011.5)=-0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$y={(\frac{1}{2})^{{x^2}-2}}$的值域是(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=$\frac{1}{{\sqrt{1+x}}}$
(1)判断f(x)在区间[0,+∞)上是否为弱减函数;
(2)当x∈[1,3]时,不等式$\frac{a}{x}≤\frac{1}{{\sqrt{1+x}}}≤\frac{a+4}{2x}$恒成立,求实数a的取值范围;
(3)若函数g(x)=f(x)+k|x|-1在[0,3]上有两个不同的零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,π],求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在矩形ABCD中,AB=3,BC=2,若点E为BC的中点,点F在CD上,$\overrightarrow{AB}$•$\overrightarrow{AF}$=6,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的值为-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.四棱锥P-ABCD的底面与四个侧面的形状和大小如图所示.

(1)写出四棱锥P-ABCD中四对线面垂直关系(不要求证明);
(2)在四棱锥P-ABCD中,若E为PA的中点,求证:BE∥平面PCD;
(3)在四棱锥P-ABCD中,设面PAB与面PCD所成的角为θ(0°<θ≤90°),求cosθ的值.

查看答案和解析>>

同步练习册答案