精英家教网 > 高中数学 > 题目详情
设函数f(x)在定义域R上总有f(x)=-f(x+2),且当-1<x≤1时,f(x)=x2+2.
(1)当3<x≤5时,求函数f(x)的解析式;
(2)判断函数f(x)在(3,5]上的单调性,并予以证明.
分析:(1)易证y=f(x)是以4为周期的函数,从而可由-1<x≤1时,f(x)=x2+2⇒当3<x≤5时,函数f(x)的解析式;
(2)任取x1,x2∈(3,4],且x1<x2,利用单调性的定义,作差f(x1)-f(x2)判断其符号即可.
解答:解:(1)∵f(x)=-f(x+2),
∴f(x+2)=-f(x),
∴f(x+4)=f[(x+2)+2]=-f(x+2)=-[-f(x)]=f(x),
∴y=f(x)是以4为周期的函数,
又当-1<x≤1时,f(x)=x2+2,
∴当3<x≤5时,-1<x-4≤1,
∴f(x)=f(x-4)=(x-4)2+2;
(2)∵函数f(x)=(x-4)2+2的对称轴是x=4,
∴函数f(x)=(x-4)2+2在(3,4]上单调递减,在[4,5]上单调递增;
证明:任取x1,x2∈(3,4],且x1<x2,有
f(x1)-f(x2
=[(x1-4)2+2]-[(x2-4)2+2]
=(x1-x2)(x1+x2-8).
∵3<x1<x2≤4,
∴x1-x2<0,x1+x2-8<0.
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
故函数y=f(x)在(3,4]上单调递减.
同理可证函数在[4,5]上单调递增.
点评:本题考查抽象函数及其应用,着重考查函数的周期性与单调性,考查推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=
a
x
-x2
(a为实数).
(1)若f(
1
2
)=-2
,求a的值;
(2)当x∈(0,1]时,求f(x)的解析式;
(3)当a>2时,试判断f(x)在(0,1]上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=
f(x),f(x)≤K
K,f(x)>K.
取函数f(x)=2-|x|.当K=
1
2
时,函数fK(x)的单调递增区间为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,-1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数:fK(x)=
f(x),f(x)≤K
1
f(x)
,f(x)>K
,取函数f(x)=a11(a>1).当K=
1
a
时,函数f(x)值域是(  )
A、[0,
1
a
]∪[1,a)
B、(0,
1
a
]∪[1,a]
C、(0,1]∪[
1
a
,a)
D、(0,
1
a
]∪[1,a)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江)设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f(
3
2
)
=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,是否存在这样的实数a,使得不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]都成立?若存在,试求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案