精英家教网 > 高中数学 > 题目详情

【题目】在四面体S—ABC中,,二面角S—AC—B的余弦值是,则该四面体外接球的表面积是

A.B.C.24D.6

【答案】D

【解析】

AC中点D,连接SDBD,由题意可得∠SDB为二面角SACB,取等边SAC的中心E,找出O点为四面体的外接球球心.

AC中点D,连接SDBD

因为,所以BDAC

因为SASC2,所以SDACAC⊥平面SDB

所以∠SDB为二面角SACB

所以AC2

取等边SAC的中心E,作EO⊥平面SAC

DDO⊥平面ABCO为外接球球心,

所以ED,二面角SACB的余弦值是,所以OD

所以BOOAOSOC

所以O点为四面体的外接球球心,

其半径为,表面积为

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设奇函数上是增函数,且,则不等式的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对该市市民进行了一次动物保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参'与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

15

5

10

若规定问卷得分不低于70分的市民称为“动物保护关注者”,则山图中表格可得列联表如下:

非“动物保护关注者”

是“动物保护关注者”

合计

10

45

55

15

30

45

合计

25

75

100

1)请判断能否在犯错误的概率不超过005的前提下认为“动物保护关注者”与性别有关?

2)若问卷得分不低于80分的人称为“动物保护达人”.现在从本次调查的“动物保护达人”中利用分层抽样的方法随机抽取6名市民参与环保知识问答,再从这6名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“动物保护达人”又有女动物保护达人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为把满足条件的所有数列构成的集合记为.

(1)若数列通项为求证

(2)若数列是等差数列的取值范围

(3)若数列的各项均为正数数列中是否存在无穷多项依次成等差数列若存在给出一个数列的通项若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,证明:

(Ⅲ)求证:对任意正整数,都有 (其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.

星期

星期2

星期3

星期4

星期5

星期6

利润

2

3

5

6

9

1)根据上表提供的数据,用最小二乘法求线性回归直线方程

2)估计星期日获得的利润为多少万元.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是抛物线的焦点,动直线过点且与抛物线相交于两点.当直线变化时,的最小值为4.

1)求抛物线的标准方程;

2)过点分别作抛物线的切线相交于点轴分别交于点,求证:的面积之比为定值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面底面

(Ⅰ)求证:平面

(Ⅱ)与平面所成的角为求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自出生之日起,人的情绪、体力、智力等心理、生理状况就呈周期变化,变化由线为.根据心理学家的统计,人体节律分为体力节律、情绪节律和智力节律三种.这些节律的时间周期分别为23天、28天、33.每个节律周期又分为高潮期、临界日和低潮期三个阶段.以上三个节律周期的半数为临界日,这就是说11.5天、14天、16.5天分别为体力节律、情绪节律和智力节律的临界日.临界日的前半期为高潮期,后半期为低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天计算).

1)请写出小英的体力、情绪和智力节律曲线的函数;

2)试判断小英在2019422日三种节律各处于什么阶段,当日小英是否适合参加某项体育竞技比赛?

查看答案和解析>>

同步练习册答案