【题目】已知数列的前项和为,把满足条件的所有数列构成的集合记为.
(1)若数列通项为,求证:;
(2)若数列是等差数列,且,求的取值范围;
(3)若数列的各项均为正数,且,数列中是否存在无穷多项依次成等差数列,若存在,给出一个数列的通项;若不存在,说明理由.
【答案】(1)见解析;(2);(3)数列中不存在无穷多项依次成等差数列.
【解析】
(1)由,得和,再证明,即可满足题意;(2)设的公差为,由,得,又,即,所以d=1,的取值范围;(3)假设数列中存在无穷多项依次成等差数列,不妨设该等差数列的第项为(为常数),由,得到当时,关于的不等式有无穷多个解,推出矛盾,所以不存在.
(1)因为,所以,所以 ,所以,即.
(2)设的公差为,因为,
所以
特别的当时,,即,
由得 ,整理得,因为上述不等式对一切恒成立,所以必有,解得,
又,所以,
于是,即,
所以,即,
所以,
因此的取值范围是.
(3)由得,所以,即,
所以,
从而有,
又,所以,即,
又,,
所以有,所以,
假设数列中存在无穷多项依次成等差数列,
不妨设该等差数列的第项为(为常数),
则存在,,使得,
即,
设,,,
则
即,
于是当时,,
从而有:当时,即,
于是当时,关于的不等式有无穷多个解,显然不成立,
因此数列中是不存在无穷多项依次成等差数列.
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量y件 | 100 | 94 | 93 | 90 | 85 | 78 |
附:对于一组数据,其回归直线的斜率的最小二乘估计值为; 本题参考数值:.
(1)若销量y与单价x服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于回归分析的说法中错误的是( )
A. 回归直线一定过样本中心
B. 残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适
C. 两个模型中残差平方和越小的模型拟合的效果越好
D. 甲、乙两个模型的分别约为0.98和0.80,则模型乙的拟合效果更好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).在以为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(Ⅰ)求曲线的普通方程和直线的直角坐标方程;
(Ⅱ)设点,若直线与曲线交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.
(1)求侧面与底面所成的二面角的大小;
(2)若是的中点,求异面直线与所成角的正切值;
(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像与轴的相邻两交点的坐标分别为,,且当时,有最小值.
(1)求函数的解析式及单调递减区间;
(2)将的图像向右平移个单位,再将所得图像的横坐标伸长为原来的倍(纵坐标不变),得到函数的图像,若关于的方程在区间上有两个解,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com