【题目】已知函数的图像与轴的相邻两交点的坐标分别为,,且当时,有最小值.
(1)求函数的解析式及单调递减区间;
(2)将的图像向右平移个单位,再将所得图像的横坐标伸长为原来的倍(纵坐标不变),得到函数的图像,若关于的方程在区间上有两个解,求的取值范围.
科目:高中数学 来源: 题型:
【题目】为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).
(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
优分 | 非优分 | 总计 | |
男生 | |||
女生 | |||
总计 | 50 |
(ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,把满足条件的所有数列构成的集合记为.
(1)若数列通项为,求证:;
(2)若数列是等差数列,且,求的取值范围;
(3)若数列的各项均为正数,且,数列中是否存在无穷多项依次成等差数列,若存在,给出一个数列的通项;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利润 | 2 | 3 | 5 | 6 | 9 |
(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;
(2)估计星期日获得的利润为多少万元.
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点是抛物线:的焦点,动直线过点且与抛物线相交于,两点.当直线变化时,的最小值为4.
(1)求抛物线的标准方程;
(2)过点,分别作抛物线的切线,,与相交于点,,与轴分别交于点,,求证:与的面积之比为定值(为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.
(1)求证:平面平面BCM;
(2)当四棱锥的体积最大时,求AM与CD所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个圆内有6000个点,其中任三点都不共线;①能否把这个圆分成2000块,使每块恰含有三个点,如何分?②若每块中三点满足:两两间的距离皆为整数且不超过9,则以每块中的三点为顶点作三角形,这些三角形中大小完全一样的三角形至少有多少个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种工业机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:
方案一:交纳延保金700元,在延保的两年内可免费维修2次,超过2次每次收取维修费200元;
方案二:交纳延保金1000元,在延保的两年内可免费维修4次,超过4次每次收取维修费100元.
某工厂准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:
维修次数 | 0 | 1 | 2 | 3 |
台数 | 5 | 20 | 10 | 15 |
以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,工厂选择哪种延保方案更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com