精英家教网 > 高中数学 > 题目详情
若三角形三边之比为3:5:7,则其最大角为
 
度.
考点:余弦定理
专题:解三角形
分析:根据题意设出三角形三边,且最大角为α,利用余弦定理表示出cosα,将三边长代入求出cosα的值,即可确定出α的度数.
解答: 解:根据题意设三角形三边长为3x,5x,7x,最大角为α,
由余弦定理得:cosα=
(3x)2+(5x)2-(7x)2
30x2
=-
1
2

则最大角为120°.
故答案为:120
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=1n(x+1)-ax(a∈R)
(1)求y=f(x)的单调区间;
(2)当a=1时,求f(x)在定义域上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,其中a>0,
(1)求函数f(x)在区间(0,e]上的最小值;
(2)求证:1+
1
2
+
1
3
+…+
1
n
≥n-ln(n!)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A(1,0),B(-
1
2
3
2
),点C为α终边与单位圆交点,α∈[0,
3
],
OC
OA
OB
,λ,μ∈R.
(1)当α=
π
3
时,求λ+μ的值;
(2)用α表示2λ-μ,并求2λ-μ的取值范围;
(3)当α在区间[0,
3
]变化时,μ2+m(2λ-μ)的最大值为1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+2定义域为[0,b],值域为[1,5],则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校在期中考试后,统计了8位同学的考试成绩为如图所示的茎叶图,ai(i=1,2,…,8)是第i名同学的考试成绩,一部分计算见如图所示的程序框图(期中
.
a
是这8个数据的平均数),则输出s的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+2x2-ax+1在(-1,1)上存在极值点,则实数a的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边长分别为a、b、c,若a2+b2=2c2,则C的最大角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若y=sinx是增函数,y=cosx是减函数,那么角x在第
 
象限.

查看答案和解析>>

同步练习册答案