精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-ax+1在x=2处的切线斜率为-
1
2

(I)求实数a的值及函数f(x)的单调区间;
(II)设g(x)=kx+1,对?x∈(0,+∞),f(x)≤g(x)恒成立,求实数k的取值范围;
(III)设bn=
ln(n+1)
n3
,证明:b1+b2+…+bn<1+ln2(n∈N*,n≥2).
(Ⅰ)由已知:f′(x)=
1
x
-a
(x>0),
∵函数f(x)=lnx-ax+1在x=2处的切线斜率为-
1
2

f′(2)=
1
2
-a=-
1
2
,∴a=1.
f′(x)=
1
x
-1=
1-x
x

当x∈(0,1)时,f′(x)>0,f (x)为增函数,当x∈(1,+∞)时,f′(x)<0,f (x)为减函数,
∴f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞).  …(5分)
(Ⅱ)?x∈(0,+∞),f (x)≤g(x),即lnx-(k+1)x≤0恒成立,
设h(x)=lnx-(k+1)x,有h′(x)=
1-(k+1)x
x

①当k+1≤0,即k≤-1时,h′(x)>0,此时h(1)=ln1-(k+1)≥0与h(x)≤0矛盾.
②当k+1>0,即k>-1时,令h′(x)=0,解得x=
1
k+1

x∈(0,
1
k+1
)
,h′(x)>0,h(x)为增函数,x∈(
1
k+1
,+∞)
,h′(x)<0,h(x)为减函数,
∴h(x)max=h(
1
k+1
)=ln
1
k+1
-1≤0,
即ln(k+1)≥-1,解得k≥
1
e
-1

综合k>-1,知k≥
1
e
-1

∴综上所述,k的取值范围为[
1
e
-1
,+∞).…(10分)
(Ⅲ)证明:由(Ⅰ)知f (x)在(0,1)上是增函数,在(1,+∞)上是减函数,
∴f (x)≤f (1)=0,∴lnx≤x-1.
当n=1时,b1=ln(1+1)=ln2,
当n≥2时,有ln(n+1)<n,
∵bn=
ln(n+1)
n3
n
n3
=
1
n2
1
n(n-1)
=
1
n-1
-
1
n

∴b1+b2+…+bn<b1+(
1
2-1
-
1
2
)+…+(
1
n-1
-
1
n
)=ln2+(1-
1
n
)<1+ln2.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案