精英家教网 > 高中数学 > 题目详情
(2008•奉贤区模拟)对于函数f(x)=x•sinx,给出下列三个命题:①f(x)是偶函数;②f(x)是周期函数;③f(x)在区间[0,π]上的最大值为
π2
.正确的是
(写出所有真命题的序号).
分析:①研究函数的奇偶性,可用偶函数的定义来证明之;
②研究的是函数的周期性,采用举对立面的形式说明其不成立;
③研究函数的单调性,可用两个函数相乘时单调性的判断方法进行判断.
解答:解:对于①,由于f(-x)=-xsin(-x)=xsinx=f(x),故函数f(x)是偶函数,①正确;
对于②,当x=2kπ+
π
2
时,f(x)=x,随着x的增大函数值也在增大,所以不会是周期函数,故②错;
对于③,由于f'(x)=sinx+xcosx,在区间[0,
π
2
]上f'(x)>0,在x=
π
2
时f'(x)>0,f(
π
2
)=
π
2

所以在x=
π
2
的右边,函数值继续增大,故f(x)在区间[0,π]上的最大值大于
π
2
,故③错.
故答案为:①.
点评:本题考点是函数的单调性判断与证明,函数的奇偶性,函数的中心对称的判断及函数的周期性,涉及到的性质比较多,且都是定义型,本题知识性较强,做题时要注意准确运用相应的知识准确解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知数列{an}的前n项和为Sn,若Sn=2n-1,则a7=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=
x2+x-2
的定义域为
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=x(1-x),x∈(0,1)的最大值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
(3)已知函数f(x)=log2x∈M.试利用此结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求证:bn=
2
7
8n-
2
7

(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步练习册答案