精英家教网 > 高中数学 > 题目详情
已知
a
b
均为单位向量.若|
a
+2
b
|=
7
,则向量
a
b
的夹角等于
π
3
π
3
分析:利用向量的模的计算公式,求出向量的夹角即可.
解答:解:因为
a
b
均为单位向量.若|
a
+2
b
|=
7
,设向量
a
b
的夹角为θ,
所以|
a
+2
b
|=
(
a
+2
b
)( 
a
+2
b
)  
=
a
2
+4
b
2
+4
a
b
=
5+4cosθ
=
7

所以cosθ=
1
2
,即θ=
π
3

故答案为:
π
3
点评:本题考查向量的数量积的运算,向量的模的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有两个质点A、B分别位于直角坐标系点(0,0),(1,1),从某一时刻开始,每隔1秒,质点分别向上下左右任一方向移动一个单位,已知质点A向左右移动的概率都是
1
4
,向上移动的概率为
1
3
,向下移动的概率为x;质点B向四个方向移动的概率均为y.
(1)求x和y的值;
(2)试问至少经过几秒,A、B能同时到达点C(2,1),并求出在最短时间内同时到达点C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•菏泽二模)已知函数①y=sinx+cosx,②y=2
2
sinxcosx,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源:高考零距离 二轮冲刺优化讲练 数学 题型:013

已知ab,且它们均为单位向量,则∠AOB的平分线上的单位向最

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上有两个质点A(0,0), B(2,2),在某一时刻开始每隔1秒向上下左右任一方向移动一个单位。已知质点A向左,右移动的概率都是,向上,下移动的概率分别是和P, 质点B向四个方向移动的概率均为q:

 (1)求P和q的值;

 (2)试判断至少需要几秒,A,B能同时到达D(1,2),并求出在最短时间同时到达的概率?

查看答案和解析>>

科目:高中数学 来源:2013年山东省菏泽市高考数学二模试卷(文科)(解析版) 题型:选择题

已知函数①y=sinx+cosx,②y=2sinxcosx,则下列结论正确的是( )
A.两个函数的图象均关于点(-,0)成中心对称
B.①的纵坐标不变,横坐标扩大为原来的2倍,再向右平移个单位即得②
C.两个函数在区间(-)上都是单调递增函数
D.两个函数的最小正周期相同

查看答案和解析>>

同步练习册答案