精英家教网 > 高中数学 > 题目详情
15.已知三棱锥O-ABC中,∠BOC=90°,OA⊥平面BOC,其中AB=AC=$\sqrt{7}$,BC=$\sqrt{11}$,O,A,B,C四点均在球S的表面上,则球S的表面积为$\frac{25π}{2}$.

分析 由已知得球S是以O为顶点,以OA、OB、OC为棱的长方体的外接球,由此先求出球S半径,从而能求出球S的表面积.

解答 解:∵三棱锥O-ABC中,∠BOC=90°,OA⊥平面BOC,其中AB=AC=$\sqrt{7}$,BC=$\sqrt{11}$,
O,A,B,C四点均在球S的表面上,
∴以O为顶点的三条棱两两垂直,
∴球S是以O为顶点,以OA、OB、OC为棱的长方体的外接球,
设球S半径为R,
则2R=$\sqrt{O{A}^{2}+O{B}^{2}+O{C}^{2}}$
=$\frac{1}{\sqrt{2}}×\sqrt{2(O{A}^{2}+O{B}^{2}+O{C}^{2})}$
=$\frac{1}{\sqrt{2}}×\sqrt{A{B}^{2}+B{C}^{2}+A{C}^{2}}$
=$\frac{1}{\sqrt{2}}×\sqrt{7+7+11}$
=$\frac{5\sqrt{2}}{2}$,
∴R=$\frac{5\sqrt{2}}{4}$,
∴球S的表面积S=4$π×(\frac{5\sqrt{2}}{4})^{2}$=$\frac{25π}{2}$.
故答案为:$\frac{25π}{2}$.

点评 本题考查球的表面积的求法,是中档题,解题时要认真审题,解题的关键是推导出球S是以O为顶点,以OA、OB、OC为棱的长方体的外接球.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知m=(2cos(x+$\frac{π}{2}$),cosx),n=(cosx,2sin(x+$\frac{π}{2}$)),且函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1
(1)设方程f(x)-1=0在(0,π)内有两个零点x1,x2,求f(x1+x2)的值;
(2)若把函数y=f(x)的图象向左平移$\frac{π}{3}$个单位,再向上平移2个单位,得函数g(x)图象,求函数g(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={x|x>2},B={x|x≤a},若A∪B=R,则a的取值范围(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求经过三点A(1,-1),B(1,4),C(4,-2)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l与椭圆4x2+y2=4交于P,Q两点,若OP⊥OQ,则l在两坐标轴上的截距乘积最小值为(  )
A.$\frac{5}{6}$B.$\frac{8}{5}$C.2D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(z)=z-2i,z1=3+4i,z2=-2-i,则f(z1-z2)等于(  )
A.1-5iB.-2+9iC.-2-iD.5+3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2-4x(x∈[0,5])的值域为(  )
A.[-4,+∞)B.[-4,5]C.[-4,0]D.[0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=-1+loga(x+2)恒过定点A,则点A的坐标为(-1,-1).

查看答案和解析>>

同步练习册答案