精英家教网 > 高中数学 > 题目详情
5.已知m=(2cos(x+$\frac{π}{2}$),cosx),n=(cosx,2sin(x+$\frac{π}{2}$)),且函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1
(1)设方程f(x)-1=0在(0,π)内有两个零点x1,x2,求f(x1+x2)的值;
(2)若把函数y=f(x)的图象向左平移$\frac{π}{3}$个单位,再向上平移2个单位,得函数g(x)图象,求函数g(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调增区间.

分析 (1)利用平面向量数量积的运算可得f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)+2,由题意解得cos(2x+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,结合范围x∈(0,π),解得x1,x2的值,即可得解.
(2)利用函数y=Asin(ωx+φ)的图象变换可得g(x)=$\sqrt{2}$cos(2x+$\frac{11π}{12}$)+4,由2kπ-π≤2x+$\frac{11π}{12}$≤2kπ即可解得函数g(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调增区间.

解答 解:(1)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1
=2cos(x+$\frac{π}{2}$)cosx+cosx2sin(x+$\frac{π}{2}$)+1
=-2sinxcosx+2cosxcosx+1
=-sin2x+1+cos2x+1
=$\sqrt{2}$cos(2x+$\frac{π}{4}$)+2,…(2分)
而f(x)-1=0,得:cos(2x+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,而x∈(0,π),得:$\left\{\begin{array}{l}{{x}_{1}=\frac{π}{4}}\\{{x}_{2}=\frac{π}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{1}=\frac{π}{2}}\\{{x}_{2}=\frac{π}{4}}\end{array}\right.$,
所以f(x1+x2)=f($\frac{3π}{4}$)=$\sqrt{2}$cos($\frac{3π}{2}$+$\frac{π}{4}$)+2=3.…(6分)
(2)f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)+2左移$\frac{π}{3}$个单位得f(x)=$\sqrt{2}$cos(2x+$\frac{11π}{12}$)+2,再上移2个单位得g(x)=$\sqrt{2}$cos(2x+$\frac{11π}{12}$)+4,…(8分)
则g(x)的单调递增区间:2kπ-π≤2x+$\frac{11π}{12}$≤2kπ,k∈Z.所以kπ-$\frac{23}{24}$π≤x≤kπ-$\frac{11}{24}$π,k∈Z.
而x∈[-$\frac{π}{2}$,$\frac{π}{2}$],得:f(x)在x∈[-$\frac{π}{2}$,-$\frac{11π}{24}$]和x∈[$\frac{π}{24}$,$\frac{π}{2}$]上递增.…(12分)

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换,平面向量数量积的运算,三角函数中的恒等变换应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设集合A={1,2,3},B={2,4},则A∩B={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.a=log${\;}_{\frac{1}{3}}$2,b=($\frac{1}{3}$)0.2,c=2${\;}^{\frac{1}{3}}$,则(  )
A.b<a<cB.c<b<aC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=log2(x-1)的定义域是(  )
A.(-1,0)B.(1,+∞)C.(-1,log45)D.(-1,0)∪(0,log45)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|的最大值是(  )
A.1B.$\sqrt{2}$+1C.$\sqrt{2}$-1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的函数f(x)满足f(x+1)=$\frac{1}{f(x)}$,且当x∈[0,1]时,f(x)=2x,则f(7.5)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a∈R,函数f(x)=x|x-a|-a,若对任意的x∈[2,3],f(x)≥0恒成立,则(  )
A.a≤1或a≥$\frac{9}{2}$B.a≤$\frac{4}{3}$或a≥$\frac{7}{2}$C.a≤1或a≥$\frac{7}{2}$D.a≤$\frac{4}{3}$或a≥$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.cos$\frac{π}{12}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知三棱锥O-ABC中,∠BOC=90°,OA⊥平面BOC,其中AB=AC=$\sqrt{7}$,BC=$\sqrt{11}$,O,A,B,C四点均在球S的表面上,则球S的表面积为$\frac{25π}{2}$.

查看答案和解析>>

同步练习册答案