精英家教网 > 高中数学 > 题目详情
(2012•江苏二模)已知a为正实数,函数f(x)=
a-xa+x
ex
(e为自然对数的底数).
(1)若f(0)>f(1),求a的取值范围;
(2)当a=2时,解不等式f(x)<1;
(3)求函数f(x)的单调区间.
分析:(1)根据f(0)>f(1),可得
a-1
a+1
e<1
,利用a>0,可求a的取值范围;
(2)确定f(x)在(-∞,-2)及(-2,+∞)上均为减函数,从而可解不等式;
(3)求导函数,分类讨论,利用导数的正负,即可得到函数的单调区间.
解答:解:(1)∵f(0)>f(1),∴
a-1
a+1
e<1

∵a>0,∴a(e-1)<e+1
∵e-1>0,∴a<
e+1
e-1

∵a>0,∴0<a<
e+1
e-1

(2)当a=2时,f(x)=
2-x
2+x
ex
,定义域为{x|x≠-2}
f′(x)=
-x2
(2+x)2
ex<0

∴f(x)在(-∞,-2)及(-2,+∞)上均为减函数
∵x∈(-∞,-2),f(x)<0,∴x∈(-∞,-2)时,f(x)<1;x∈(-2,+∞)时,f(0)=1,∴由f(x)<f(0)得x>0
综上,不等式的解集为(-∞,-2)∪(0,+∞);
(3)当x≠-a时,f′(x)=
-x2+a2-2a
(a+x)2
ex

令f′(x)=0,可得x2=a2-2a
①a=2时,由(2)知,函数的单调减区间为(-∞,-2),(-2,+∞);
②0<a<2时,a2-2a<0,f′(x)<0恒成立,故函数的单调减区间为(-∞,-a),(-a,+∞);
③a>2时,a2-2a>0
令f′(x)>0,得x2<a2-2a,∴-
a2-2a
<x<
a2-2a

令f′(x)<0,得x2>a2-2a,∴x<-
a2-2a
x>
a2-2a

∴函数的单调增区间为(-
a2-2a
a2-2a
)
,单调减区间为(-∞,-a),(-a,-
a2-2a
),(
a2-2a
,+∞).
点评:本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏二模)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
(1)若α∥β,m?β,n?α,则m∥n;
(2)若α∥β,m⊥β,n∥α,则m⊥n;
(3)若α⊥β,m⊥α,n∥β,则m∥n;
(4)若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,已知A、B是函数y=3sin(2x+θ)的图象与x轴两相邻交点,C是图象上A,B之间的最低点,则
AB
AC
=
π2
8
π2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,在C城周边已有两条公路l1,l2在点O处交汇,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城,已知OC=(
2
+
6
)km
,∠AOB=75°,∠AOC=45°,设OA=xkm,OB=ykm.
(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点A、B的位置,使△OAB的面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)设实数n≤6,若不等式2xm+(2-x)n-8≥0对任意x∈[-4,2]都成立,则
m4-n4
m3n
的最小值为
-
80
3
-
80
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)已知双曲线
x2
m
-
y2
3
=1(m>0)
的一条渐近线方程为y=
3
2
x
,则m的值为
4
4

查看答案和解析>>

同步练习册答案