分析 (1)由题意得S2•S3=(2+d)(3+3d)=36,从而解d及Sn;
(2)由(1)知an=2n-1,结合20<2n-1<50可得11≤n≤25,故${a_{11}}+{a_{12}}+…+{a_{25}}={S_{25}}-{S_{10}}={25^2}-{10^2}=525$.
解答 解:(1)∵a1=1,
∴S2•S3=(2+d)(3+3d)=36,
解得,d=2;
故Sn=na1+$\frac{n(n-1)}{2}$×2=n2;
(2)由(1)知an=2n-1,
∵20<an<50,20<2n-1<50;
∴11≤n≤25,
∴${a_{11}}+{a_{12}}+…+{a_{25}}={S_{25}}-{S_{10}}={25^2}-{10^2}=525$.
点评 本题考查了等差数列的公差的求法及前n项和的求法,同时考查了不等式的解法与应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{4\sqrt{3}}{3}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com