精英家教网 > 高中数学 > 题目详情
如右下图所示,点S在平面ABC外,SB⊥AC,SB=AC=2, E、F分别是SC和AB的中点,则EF=________.                        
取BC的中点D,连接ED与FD,∵E、F分别是SC和AB的中点,点D为BC的中点
∴ED∥SB,FD∥AC,而SB⊥AC,SB=AC=2则三角形EDF为等腰直角三角形,则ED=FD=1即EF=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

( 12分)如图,在四棱锥中,侧面是正三角形,底面是边长为2的正方形,侧面平面的中点.

①求证:平面
②求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.
(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,在底面是正方形的四棱锥中,于点中点,上一点.
⑴求证:
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,已知正方体是底对角线的交点.
求证:(1)
(2 )
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,在三棱锥中,的中点,平面,垂足落在线段上,已知
(1)证明:;
(2)在线段上是否存在点,使得二面角为直二面角?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥的底面是正方形,⊥平面,点E
是SD上的点,且.

(1)求证:对任意的,都有AC⊥BE;
(2)若二面角C-AE-D的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面外有两条直线,如果在平面内的射影分别是,给出下列四个命题:① ② ③相交相交或重合 ④平行平行或重合,其中不正确的命题的个数是(     )
A.4个B.3个C.2个D. 1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥的底面边长为,高为是边的中点,动点在这个棱锥表面上运动,并且总保持,则动点的轨迹的周长为    .

查看答案和解析>>

同步练习册答案