精英家教网 > 高中数学 > 题目详情
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式可把平面直角坐标系上的一点变换到这一平面上的一点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程,并求出其两个焦点经变换公式变换后得到的点的坐标;
(2) 若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点. 求(1)中的椭圆在变换下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换下的不动点的存在情况和个数.
(1)设椭圆的标准方程为),由椭圆定义知焦距,即…①.
又由条件得…②,故由①、②可解得.
即椭圆的标准方程为.
且椭圆两个焦点的坐标分别为.
对于变换,当时,可得
分别是由的坐标由变换公式变换得到.于是,,即的坐标为
的坐标为.
(2)设是椭圆在变换下的不动点,则当时,
,由点,即,得:
      ,因而椭圆的不动点共有两个,分别为.
(3)由(2)可知,曲线在变换下的不动点需满足.
情形一:据题意,不妨设椭圆方程为),
则有.
因为,所以恒成立,因此椭圆在变换下的不动点必定存在,且一定有2个不动点.
情形二:设双曲线方程为),
则有,
因为,故当时,方程无解;
时,故要使不动点存在,则需
因此,当且仅当时,双曲线在变换下一定有2个不动点.否则不存在不动点.
进一步分类可知,
(i) 当时,.
即双曲线的焦点在轴上时,需满足时,双曲线在变换下一定有2个不动点.否则不存在不动点.
(ii) 当时,.
即双曲线的焦点在轴上时,需满足时,双曲线在变换下一定有2个不动点.否则不存在不动点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
设函数).
(Ⅰ)当时,求的极值;
(Ⅱ)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
在平面直角坐标系中,已知点,点在直线上运动,过点垂直的直线和的中垂线相交于点
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设点是轨迹上的动点,点轴上,圆为参数)内切于,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若为钝角三角形,则该双曲线的离心率的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分,第(1)小题4分,第(2)小题8分,第(3)小题4分)
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于。证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知动圆过点,且与相内切.
(1)求动圆的圆心的轨迹方程;
(2)设直线(其中与(1)中所求轨迹交于不同两点D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆的中点在原点O,焦点在x轴上,点是其左顶点,点C在椭圆上且
(I)求椭圆的方程;
(II)若平行于CO的直线和椭圆交于MN两个不同点,求面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点,动点满足,则点P的轨迹是(   )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果曲线处的切线互相垂直,则的值为       .

查看答案和解析>>

同步练习册答案