【题目】已知甲、乙、丙三个组的老年人数分别为30,30,24.现用分层抽样的方法从中抽取14人,进行身体状况调查.
(1)应从甲、乙、丙三个小组各抽取多少人?
(2)若抽出的14人中,10人身体状况良好,还有4人有不同程度的状况要进行治疗,现从这14人中,再抽3人进一步了解情况,用
表示抽取的3人中,身体状况良好的人数,求
的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若函数
,求函数
的单调区间;
(Ⅱ)设直线l为函数
的图象上一点
处的切线,证明:在区间
上存在唯一的
,使得直线l与曲线
相切并求出此时n的值.(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
).
(1)若曲线
在
处的切线也是曲线
的切线,求
的值;
(2)记
,设
是函数
的两个极值点,且
.
① 若
恒成立,求实数
的取值范围;
② 判断函数
的零点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中曲线
的参数方程为
(
为参数),以
为极点,
轴的正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的普通方程以及直线
的直角坐标方程;
(2)将曲线
向左平移2个单位,再将曲线
上的所有点的横坐标缩短为原来的
,得到曲线
,求曲线
上的点到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“石头、剪刀、布”,又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在圆心角为直角,半径为
的扇形区域内进行野外生存训练.如图所示,在相距
的
,
两个位置分别为300,100名学生,在道路
上设置集合地点
,要求所有学生沿最短路径到
点集合,记所有学生进行的总路程为
.
![]()
(1)设
,写出
关于
的函数表达式;
(2)当
最小时,集合地点
离点
多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图像向左平移
个单位,再将所有点的横坐标缩短到原来的
倍,纵坐标不变,得到函数
的图像则下面对函数
的叙述不正确的是( )
A.函数
的周期![]()
B.函数
的一个对称中心![]()
C.函数
在区间
内单调递增
D.当
,
时,函数
有最小值![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某篮球队员进行定点投篮训练,每次投中的概率是
,且每次投篮的结果互不影响.
(1)假设这名队员投篮5次,求恰有2次投中的概率;
(2)假设这名队员投篮3次,每次投篮,投中得1分,为投中得0分,在3次投篮中,若有2次连续投中,而另外一次未投中,则额外加1分;若3次全投中,则额外加3分,记
为队员投篮3次后的总的分数,求
的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com