【题目】已知圆
:
与直线
:
,动直线
过定点
.
![]()
(1)若直线
与圆
相切,求直线
的方程;
(2)若直线
与圆
相交于
、
两点,点M是PQ的中点,直线
与直线
相交于点N.探索
是否为定值,若是,求出该定值;若不是,请说明理由.
【答案】(1)直线
的方程为
或
(2)![]()
为定值
,详见解析
【解析】
(1)假设直线方程,再根据直线与圆相切,则圆心到直线的距离等于半径求解;(2)根据向量加法三角形法和数量积公式把
化为
,联立两直线方程求出点
的坐标,把向量积用坐标表示,化简即可的得到结果.
解:(1)当直线
的斜率不存在时,
直线
的方程为
,此时与圆相切,符合题意;
当直线
的斜率存在时,
设直线
的方程为
,即
,
若直线与圆相切,则圆心
到直线的距离等于半径1,
所以
,解得
,
所以直线
的方程为
,即
.
综上,直线
的方程为
或
.
直线
的方程为
或
.
(2)∵
⊥
,
∴![]()
若直线
与
轴垂直时,不符合题意;
所以
的斜率存在,设直线
的方程为
,
则由
,即
.
∴
,
从而
.
综上所述,
.
科目:高中数学 来源: 题型:
【题目】某校举办“中国诗词大赛”活动,某班派出甲乙两名选手同时参加比赛.大赛设有15个诗词填空题,其中“唐诗”、“宋词”和“毛泽东诗词”各5个.每位选手从三类诗词中各任选1个进行作答,3个全答对选手得3分,答对2个选手得2分,答对1个选手得1分,一个都没答对选手得0分.已知“唐诗”、“宋词”和“毛泽东诗词”中甲能答对的题目个数依次为5,4,3,乙能答对的题目个数依此为4,5,4,假设每人各题答对与否互不影响,甲乙两人答对与否也互不影响. 求:
(Ⅰ)甲乙两人同时得到3分的概率;
(Ⅱ)甲乙两人得分之和ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的两个焦点分别为
和
,短轴的两个端点分别为
和
,点
在椭圆
上,且满足
,当
变化时,给出下列三个命题:
①点
的轨迹关于
轴对称;②
的最小值为2;
③存在
使得椭圆
上满足条件的点
仅有两个,
其中,所有正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)若
,解不等式
;
(Ⅱ)设
是函数
的四个不同的零点,问是否存在实数
,使得其中三个零点成等差数列?若存在,求出所有
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
且函数
图象上点
处的切线斜率为
.
(1)试用含有
的式子表示
,并讨论
的单调性;
(2)对于函数图象上的不同两点
如果在函数图象上存在点
使得点
处的切线
,则称
存在“跟随切线”.特别地,当
时,又称
存在“中值跟随切线”.试问:函数
上是否存在两点
使得它存在“中值跟随切线”,若存在,求出
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx),其中常数ω>0
(1)令ω=1,判断函数
的奇偶性,并说明理由;
(2)令ω=2,将函数y=f(x)的图象向左平移个
单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com