精英家教网 > 高中数学 > 题目详情

(本小题14分)抛物线与直线相交于两点,且
(1)求的值。
(2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。

(1)(2)存在点满足要求

解析试题分析:(1)设,由直线与抛物线方程联立可得:


可得
.                                          ……6分
(2)假设存在动点,使得的重心恰为抛物线的焦点
由题意可知,的中点坐标为
由三角形重心的性质可知,,
,满足抛物线方程,
故存在动点,使得的重心恰为抛物线的焦点 ……………14分
考点:本小题主要考查抛物线的简单性质.
点评:解决直线与圆锥曲线位置关系的题目,往往离不开联立方程组,联立方程组后往往利用“设而不求”的思想方法解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  
(I)求椭圆C1的方程;  (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且

(Ⅰ)求证:直线AB过抛物线C的焦点;
(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知椭圆的离心率为,一条准线

(1)求椭圆的方程;
(2)设O为坐标原点,上的点,为椭圆的右焦点,过点FOM的垂线与以OM为直径的圆交于两点.
①若,求圆的方程;
②若l上的动点,求证:点在定圆上,并求该定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,

(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)

过抛物线焦点垂直于对称轴的弦叫做抛物线的通径。如图,已知抛物线,过其焦点F的直线交抛物线于 两点。过作准线的垂线,垂足分别为.

(1)求出抛物线的通径,证明都是定值,并求出这个定值;
(2)证明: .

查看答案和解析>>

同步练习册答案