(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,
且。
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
科目:高中数学 来源: 题型:解答题
已知椭圆()过点(0,2),离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)抛物线与直线相交于两点,且
(1)求的值。
(2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于,两点.
① 若直线垂直于轴,求的大小;
② 若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C :经过点离心率为。
(Ⅰ) 求椭圆C的方程;
(Ⅱ)设直线l与椭圆C相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点。求O到直线l的距离的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点分别为,离心率。
(1)求椭圆方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为–,求直线l倾斜角的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,)在椭圆上,。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com